• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2023, Volume: 16, Issue: 9, Pages: 640-647

Original Article

Implementation of Machine Learning and Deep Learning for Securing the Devices in IOT Systems

Received Date:14 January 2023, Accepted Date:05 February 2023, Published Date:05 March 2023


Objectives: To fix the security issues of devices in internet of things (IOT) systems that arise when Machine learning (ML) and Deep Learning algorithm (DLA) are implemented in the IOT systems. Methods: Each packet of IoT threats has been filtered by using suitable attack model for primary attack detection. In deep learning, network traffic field’s information is extracted from of packet and is used as the training features. Attack is proposed to be detected by the use of database-based features of attack. If attack is found then packet will be discarded along with update feedback to filtering stage for primary attack detection. Knowledge Discovery and Data Mining (KDD) dataset is used in this study. Different types of Mirai attack are considered for classification. The performance of the proposed method has been compared in terms of accuracy and execution time with earlier work using traditional ML-DL methods. Findings: The proposed technique is seen to achieve high accuracy level at the least computational time, concurrently with much higher recall and G-mean values Several algorithms are used to secure the IOT devices from various types of threats and a comparison is depicted with their accuracy and execution time. Results show that the proposed methodology using Convolution neural network (CNN) for classification, can achieve the accuracy ~0.9976 with execution time1.30 sec and G-mean 0.7865 only. Novelty: The proposed method is essentially a judiciously configured ML- DL technique which is novel and exhibits better performance in terms of mitigating IoT threats.

Keywords: IOT devices and threats; Machine Learning; Deep Learning; KDD; Security and privacy


  1. Bharati S, Mondal MRH, Podder P, Prasath VBS. Federated learning: Applications, challenges and future directions. International Journal of Hybrid Intelligent Systems. 2022;18(1-2):19–35. Available from: https://doi.org/10.3233/HIS-220006
  2. Omolara AE, Alabdulatif A, Abiodun OI, Alawida M, Alabdulatif A, Alshoura WH, et al. The internet of things security: A survey encompassing unexplored areas and new insights. Computers & Security. 2022;112:102494. Available from: https://doi.org/10.1016/j.cose.2021.102494
  3. Abbas G, Mehmood A, Carsten M, Epiphaniou G, Lloret J. Safety, Security and Privacy in Machine Learning Based Internet of Things. Journal of Sensor and Actuator Networks. 2022;11(3):38. Available from: https://doi.org/10.3390/jsan11030038
  4. Ahanger TA, Tariq U, Ibrahim A, Ullah IA, Bouteraa Y, Gebali F. Securing IoT-Empowered Fog Computing Systems: Machine Learning Perspective. Mathematics. 2022;10(8):1298. Available from: https://doi.org/10.3390/math10081298
  5. Agarwal S, Gupta MK. Context Aware Image Sentiment Classification using Deep Learning Techniques. Indian Journal Of Science And Technology. 2022;15(47):2619–2627. Available from: https://doi.org/10.17485/IJST/v15i47.1907
  6. Banaamah AM, Ahmad I. Intrusion Detection in IoT Using Deep Learning. Sensors. 2022;22(21):8417. Available from: https://doi.org/10.3390/s22218417
  7. Susilo B, Sari RF. Intrusion Detection in IoT Networks Using Deep Learning Algorithm. Information. 2020;11(5):279. Available from: https://doi.org/10.3390/info11050279
  8. Qaddoura R, Al-Zoubi AM, Faris H, Almomani I. A Multi-Layer Classification Approach for Intrusion Detection in IoT Networks Based on Deep Learning. Sensors. 2021;21(9):2987. Available from: https://doi.org/10.3390/s21092987
  9. Janani K, Ramamoorthy S. IoT Security and Privacy Using Deep Learning Model: A Review. 2021 International Conference on Intelligent Technologies (CONIT). 2021;p. 1–6. Available from: https://doi.org/10.1109/CONIT51480.2021.9498404
  10. Ganesh B, Markkandan S, Vinotha V, Priyadarshini S, Kaviya V. IoT security using machine learning techniques. 2022. Available from: https://doi.org/10.1007/978-981-19-2538-2_37
  11. Ch SC, Puli S, Santhi MVBT. Machine Learning Based Data Security Model Using Blockchain for Secure Data Transmission in IoT. 2021 Second International Conference on Electronics and Sustainable Communication Systems (ICESC). 2021;p. 1521–1527. Available from: https://doi:10.1109/ICESC51422.2021.9532659
  12. Ajagbe SA, Awotunde JB, Adesina AO, Achimugu P, Kumar TA. Internet of Medical Things (IoMT): Applications, Challenges, and Prospects in a Data-Driven Technology. Intelligent Healthcare. 2022;p. 299–319. Available from: https://doi.org/10.1007/978-981-16-8150-9_14
  13. Shilpa PC, Shereen R, Jacob S, Vinod P. Sentiment Analysis Using Deep Learning. 2021 Third International Conference on Intelligent Communication Technologies and Virtual Mobile Networks (ICICV). 2021. Available from: https://doi.org/10.1109/ICICV50876.2021.9388382
  14. Singh C, Imam T, Wibowo S, Grandhi S. A Deep Learning Approach for Sentiment Analysis of COVID-19 Reviews. Applied Sciences. 2022;12(8):3709. Available from: https://doi.org/10.3390/app12083709
  15. Khan Y, Su’ud MBM, Alam MM, Ahmad SF, Salim NA, Khan N. Architectural Threats to Security and Privacy: A Challenge for Internet of Things (IoT) Applications. Electronics. 2023;12(1):88. Available from: https://doi.org/10.3390/electronics12010088
  16. Bhukya M, Venu M, Ramdas GC, Arun V, Veerender KS, A. Intrusion detection models for IOT networks via deep learning approaches. Measurement. Sensors. 2023;25. Available from: https://doi.org/10.1016/j.measen.2022.100641
  17. Istiaque AK, Tahir M, Hadi HM, Lun LS, Ahad A. Machine Learning for authentication and authorization in IoT: taxonomy, challenges and future research direction. Sensors. 2021;21:5122. Available from: https://doi.org/10.3390/s21155122
  18. Parjanay S, Siddhant J, Shashank G, Vinay C. Role of machine learning and deep learning in securing 5G-driven industrial IoT applications. Ad Hoc Networks. 2021;123:102685. Available from: https://doi.org/10.1016/j.adhoc.2021.102685
  19. Mohammed AG, Amr M, Abdulla AA, Xiaojiang D, Ihsan A, Mohsen G. A survey of machine and deep learning methods for internet of things (IoT) security. IEEE Communications Surveys & Tutorial. 2021. Available from: https://doi.org/10.1109/COMST.2020.2988293
  20. Paul PK. Cyber Physical Systems, Machine Learning & Deep Learning—Emergence as an Academic Program and Field for Developing Digital Society. Convergence of Deep Learning in Cyber-IoT Systems and Security. 2022. 2022;p. 67–83. Available from: https://doi.org/10.1002/9781119857686.ch3


© 2023 Jagannath et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.