• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2023, Volume: 16, Issue: 29, Pages: 2204-2216

Original Article

Implementation of Nearest Co-cluster Collaborative Filtering using a Novel Similarity Index

Received Date:15 March 2022, Accepted Date:25 April 2022, Published Date:03 August 2023


Objectives: To implement Nearest Co-cluster Collaborative Filtering (NCCF) using a novel similarity index and evaluate its performance in sparse environments. Methods: An experimental and comparative evaluation of the proposed technique is performed using Python’s built – in data analysis packages. As a preliminary step, preprocessing is performed on the explicit book – crossing rating dataset acquired from the GroupLens research lab database. After preprocessing, the nearest co-cluster algorithm based on a novel similarity index is applied to achieve partial matching of users’ preferences. The proposed nearest co-cluster algorithm is experimented against two distinct types of co-clustering algorithms: Bimax for constant coclustering (abbreviated as NCCF – B) and xMotif for coherent co-clustering (abbreviated as NCCF – X). In addition, a co-clustering package CoClust and the toolkit BIDEAL are utilized for co-clusters visualization. Findings: Extensive performance evaluation findings of the proposed technique are provided, and the technique has been found to be promising for generating pertinent recommendations despite data sparsity. The technique can significantly reveal the dualism between users and books through co-clustering and partial matching of users’ preferences. Compared in terms of precision, recall, and F1 score, NCCF – B and NCCF - X outperformed Item – Based CF (IBCF), User – Based CF (UBCF) and Clustering – Based CF (CBCF). NCCF – B and NCCF – X outperformed with a precision difference of over 30% and a recall difference of 10%. When comparing two co-clustering algorithms, NCCF – X outperformed NCCF – B slightly but consistently. The differences in precision and recall are approximately 3% and 2%, respectively. However, the CBCF technique outperformed the other considered techniques in terms of execution time. Novelty : NCCF is robust in sparse environments due to its ability in revealing the dualism between users and books and in capturing the partial matching of users’ preferences.

Keywords: Recommender System; Collaborative Filtering; Similarity Index; CoClustering; Nearest Neighbor


  1. Šegota SB, Anđelić N, Mrzljak V, Lorencin I, Kuric I, Car Z. Utilization of multilayer perceptron for determining the inverse kinematics of an industrial robotic manipulator. International Journal of Advanced Robotic Systems. 2021;18(4). Available from: https://doi.org/10.1177/1729881420925283
  2. Jiang L, Liu L, Yao J, Shi L. A hybrid recommendation model in social media based on deep emotion analysis and multi-source view fusion. Journal of Cloud Computing. 2020;9(1):1–6. Available from: https://doi.org/10.1186/s13677-020-00199-2
  3. Ahmadian S, Afsharchi M, Meghdadi M. A novel approach based on multi-view reliability measures to alleviate data sparsity in recommender systems. Multimedia Tools and Applications. 2019;78(13):17763–17798. Available from: https://doi.org/10.1007/s11042-018-7079-x
  4. Dam NA, Dinh T. A Literature Review of Recommender Systems for the Cultural Sector. Proceedings of the 22nd International Conference on Enterprise Information Systems. 2020;p. 715–726. Available from: https://doi.org/10.5220/0009337807150726
  5. Kokkodis M, Ipeirotis PG. Demand-Aware Career Path Recommendations: A Reinforcement Learning Approach. Management Science. 2021;67(7):4362–4383. Available from: https://doi.org/10.1287/mnsc.2020.3727
  6. Logesh R, Subramaniyaswamy V, Malathi D, Sivaramakrishnan N, Vijayakumar V. Enhancing recommendation stability of collaborative filtering recommender system through bio-inspired clustering ensemble method. Neural Computing and Applications. 2020;32(7):2141–2164. Available from: https://doi.org/10.1007/s00521-018-3891-5
  7. Fkih F. Similarity measures for Collaborative Filtering-based Recommender Systems: Review and experimental comparison. Journal of King Saud University - Computer and Information Sciences. 2022;34(9):7645–7669. Available from: https://doi.org/10.1016/j.jksuci.2021.09.014
  8. Shen R, Recommender. A Recommender System Integrating Long Short-Term Memory and Latent Factor. Arabian Journal for Science and Engineering. 2022;47(8):9931–9941. Available from: https://link.springer.com/article/10.1007/s13369-021-05933-9
  9. Wang Y, Zhao X, Zhang Z, Zhang LY. A collaborative filtering algorithm based on item labels and Hellinger distance for sparse data. Journal of Information Science. 2022;48(6):749–766. Available from: https://doi.org/10.1177/0165551520979876
  10. Koohi H, Kiani K. Two new collaborative filtering approaches to solve the sparsity problem. Cluster Computing. 2021;24(2):753–765. Available from: https://doi.org/10.1007/s10586-020-03155-6
  11. Lee S. Fuzzy clustering with optimization for collaborative filtering-based recommender systems. Journal of Ambient Intelligence and Humanized Computing. 2022;13(9):4189–4206. Available from: https://link.springer.com/article/10.1007/s12652-021-03552-8
  12. Li M, Wen L, Chen F. A novel Collaborative Filtering recommendation approach based on Soft Co-Clustering. Physica A: Statistical Mechanics and its Applications. 2021;561:125140. Available from: https://doi.org/10.1016/j.physa.2020.125140
  13. Yadav N, Pal S, Singh AK, Singh KK. Clus-DR: Cluster-based pre-trained model for diverse recommendation generation. Journal of King Saud University - Computer and Information Sciences. 2022;34(8):6385–6399. Available from: https://doi.org/10.1016/j.jksuci.2022.02.010
  14. Ahmadian S, Moradi P, Akhlaghian F. An improved model of trust-aware recommender systems using reliability measurements. 2014 6th Conference on Information and Knowledge Technology (IKT). 2014;p. 98–103. Available from: https://doi.org/ 10.1109/IKT.2014.7030341
  15. Rezaeimehr F, Moradi P, Ahmadian S, Qader NN, Jalili M. TCARS: Time-and community-aware recommendation system. 2018. Available from: https://doi.org/10.1016/j.furture.2017.04.003
  16. Ahmadian S, Meghdadi M, Afsharchi M. A social recommendation method based on an adaptive neighbor selection mechanism. Information Processing & Management. 2018;54(4):707–725. Available from: https://doi.org/ 10.1016/j.ipm.2017.03.002
  17. Ahmadian S, Joorabloo N, Jalili M, Meghdadi M, Afsharchi M, Ren Y. A Temporal Clustering Approach for Social Recommender Systems. 2018 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM). 2018;p. 1139–1144. Available from: https://doi.org/ 10.1109/ASONAM.2018.8508723
  18. Choi S, Ha H, Hwang U, Kim C, Ha JW, Yoon S. Reinforcement learning based recommender system using biclustering technique. 2018. Available from: https://doi.org/10.48550/arXiv.1801.05532


© 2023 Kataria & Batra. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.