• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2022, Volume: 15, Issue: 3, Pages: 127-135

Original Article

In Silico Analysis of Structural Photosynthetic Genes of Arabidopsis thaliana for Unique Mirror Repeats

Received Date:01 October 2021, Accepted Date:13 January 2021, Published Date:04 February 2022


Objectives: The underlying work explores mirror sequences in the photosynthetic genes of Arabidopsis thaliana. At present, these sequences are standing at the forefront to be explored for their origin, distribution and function in plants. Methods: FPCB, a recently developed bioinformatics approach was utilized for identification of mirror sequences. It is a three step strategy based on pattern matching of alignments, produced after aligning gene sequence and its complement using mega-BLAST. This algorithm was quick and efficient enough to characterize a range of mirror sequences. Findings: All the analyzed genes were reported to harbor great variety of mirror sequences at quite high frequencies. LHCA1 gene have the highest total count of these sequences and ATPB gene have lowest of all. A total of 401 unique mirror sequences of different lengths and compositions were reported in the twelve selected genes. Promoter motifs were found to be greatly enriched with these repeats. Eleven mirror sequences of significant lengths were also reported using the above approach. Novelty: This work is the very first attempt to characterize photosynthetic genes of Arabidopsis thaliana for mirror repeats. This will further aggravate efforts to develop fingerprinting techniques based on these unique mirror sequences, which are very powerful tools to study taxonomic and evolutionary relationships. Mirror sequences are also potential candidates as drug delivery systems and in molecular medicine.

Keywords: Mirror repeats; HDNA; FPCB; photosynthetic genes; Arabidopsis thaliana


  1. Minchin S, Lodge J. Understanding biochemistry: structure and function of nucleic acids. Essays in Biochemistry. 2019;63(4):433–456. Available from: https://dx.doi.org/10.1042/ebc20180038
  2. Brazda V, Fojta M, Bowater RP. Structures and stability of simple DNA repeats from bacteria. Biochemical Journal. 2020;477(2):325–339. Available from: https://dx.doi.org/10.1042/bcj20190703
  3. Harhay GP, Harhay DM, Bono JL, Capik SF, DeDonder KD, Apley MD, et al. A Computational Method to Quantify the Effects of Slipped Strand Mispairing on Bacterial Tetranucleotide Repeats. Scientific Reports. 2019;9(1):18087. Available from: https://dx.doi.org/10.1038/s41598-019-53866-z
  4. Gralak E, Faria MV, Figueiredo AST, Rizzardi DA, Neumann M, Mendes MC, et al. Genetic divergence among corn hybrids and combining ability for agronomic and bromatological traits of silage. Genetics and Molecular Research. 2017;16(2). Available from: https://dx.doi.org/10.4238/gmr16029643
  5. Berselli M, Lavezzo E, Toppo S. NeSSie: a tool for the identification of approximate DNA sequence symmetries. Bioinformatics. 2018;34(14):2503–2505. Available from: https://dx.doi.org/10.1093/bioinformatics/bty142
  6. Arancio W, Coronnello C. Repetitive sequences in aging. Aging. 2021;13(8):10816–10817. Available from: https://dx.doi.org/10.18632/aging.203020
  7. Carta A, Bedini G, Peruzzi L. A deep dive into the ancestral chromosome number and genome size of flowering plants. New Phytologist. 2020;228(3):1097–1106. Available from: https://dx.doi.org/10.1111/nph.16668
  8. Shapiro JA, Sternberg Rv. Why repetitive DNA is essential to genome function. Biological Reviews. 2005;80(2):227–250. Available from: https://dx.doi.org/10.1017/s1464793104006657
  9. Mirkin SM. Discovery of alternative DNA structures: a heroic decade (1979-1989) Frontiers in Bioscience. 2008;13(13):1064. Available from: https://dx.doi.org/10.2741/2744
  10. Jurka J, Kapitonov VV, Kohany O, Jurka MV. Repetitive Sequences in Complex Genomes: Structure and Evolution. Annual Review of Genomics and Human Genetics. 2007;8(1):241–259. Available from: https://dx.doi.org/10.1146/annurev.genom.8.080706.092416
  11. Bustos AD, Cuadrado A, Jouve N. Sequencing of long stretches of repetitive DNA. Scientific Reports. 2016;6(1):36665. Available from: https://dx.doi.org/10.1038/srep36665
  12. Bissler JJ. DNA inverted repeats and human disease. Frontiers in Bioscience. 1998;3(4):d408–418. Available from: https://dx.doi.org/10.2741/a284
  13. Natale F, Scholl A, Rapp A, Yu W, Rausch C, Cardoso MC. DNA replication and repair kinetics of Alu, LINE-1 and satellite III genomic repetitive elements. Epigenetics & Chromatin. 2018;11(1):61. Available from: https://dx.doi.org/10.1186/s13072-018-0226-9
  14. Guiblet WM, Cremona MA, Harris RS, Chen D, Eckert KA, Chiaromonte F, et al. Non-B DNA: a major contributor to small- and large-scale variation in nucleotide substitution frequencies across the genome. Nucleic Acids Research. 2021;49(3):1497–1516. Available from: https://dx.doi.org/10.1093/nar/gkaa1269
  15. Poggi L, GFR. Alternative DNA Structures In Vivo: Molecular Evidence and Remaining Questions. Microbiology Molecular Biology Reviews. 2020;85(1). Available from: https://doi.org/10.1128/MMBR.00110-20
  16. McKinney JA, Wang G, Mukherjee A, Christensen L, Subramanian SHS, Zhao J, et al. Distinct DNA repair pathways cause genomic instability at alternative DNA structures. Nature Communications. 2020;11(1):236. Available from: https://dx.doi.org/10.1038/s41467-019-13878-9
  17. Mirkin SM, Lyamichev VI, Drushlyak KN, Dobrynin VN, Filippov SA, Frank-Kamenetskii MD. DNA H form requires a homopurine–homopyrimidine mirror repeat. Nature. 1987;330(6147):495–497. Available from: https://dx.doi.org/10.1038/330495a0
  18. Buske FA, Mattick JS, Bailey TL. Potential in vivo roles of nucleic acid triple-helices. RNA Biology. 2011;8(3):427–439. Available from: https://dx.doi.org/10.4161/rna.8.3.14999
  19. Shah KA, Mirkin SM. The hidden side of unstable DNA repeats: Mutagenesis at a distance. DNA Repair. 2015;32:106–112. Available from: https://dx.doi.org/10.1016/j.dnarep.2015.04.020
  20. Sproul JS, Barton LM, Maddison DR. Repetitive DNA Profiles Reveal Evidence of Rapid Genome Evolution and Reflect Species Boundaries in Ground Beetles. Systematic Biology. 2020;69(6):1137–1148. Available from: https://dx.doi.org/10.1093/sysbio/syaa030
  21. Tateishi-Karimata H, Sugimoto N. Roles of non-canonical structures of nucleic acids in cancer and neurodegenerative diseases. Nucleic Acids Research. 2021;49(14):7839–7855. Available from: https://dx.doi.org/10.1093/nar/gkab580
  22. Khristich AN, Armenia JF, Matera RM, Kolchinski AA, Mirkin SM. Large-scale contractions of Friedreich’s ataxia GAA repeats in yeast occur during DNA replication due to their triplex-forming ability. Proceedings of the National Academy of Sciences. 2020;117(3):1628–1637. Available from: https://dx.doi.org/10.1073/pnas.1913416117
  23. Zhang J, Fakharzadeh A, Pan F, Roland C, Sagui C. Atypical structures of GAA/TTC trinucleotide repeats underlying Friedreich’s ataxia: DNA triplexes and RNA/DNA hybrids. Nucleic Acids Research. 2020;48(17):9899–9917. Available from: https://dx.doi.org/10.1093/nar/gkaa665
  24. Zain R, Sun JS. Do natural DNA triple-helical structures occur and function in vivo? Cellular and Molecular Life Sciences. 2003;60(5):862–870. Available from: https://dx.doi.org/10.1007/s00018-003-3046-3
  25. Schroth GP, Ho PS. Occurrence of potential cruciform and H-DNA forming sequences in genomic DNA. Nucleic Acids Research. 1995;23(11):1977–1983. Available from: https://dx.doi.org/10.1093/nar/23.11.1977
  26. Mehrotra S, Goyal V. Repetitive Sequences in Plant Nuclear DNA: Types, Distribution, Evolution and Function. Genomics, Proteomics & Bioinformatics. 2014;12(4):164–171. Available from: https://dx.doi.org/10.1016/j.gpb.2014.07.003
  27. Yadav U, Yadav S, Sharma CS. Characterization of Flowering Genes of Arabidopsis thaliana for Mirror Repeats. Biointerface Research in Applied Chemistry. 12(3):2852–2861. Available from: https://doi.org/10.33263/BRIAC123.28522861
  28. Sandeep Y, Usha Y, C. SD. In-silico evaluation of ‘Mirror Repeats’ In HIV Genome. International Journal of pharma and Bio Sciences. 2021;11(5):81–87. Available from: https://dx.doi.org/10.22376/ijpbs/lpr.2021.11.5.l81-87
  29. Vikash B, Swapni G, Sitaram M, Kulbhushan S. FPCB: a simple and swift strategy for mirror repeat identification. eprint arXiv:1312.3869. 2013. Available from: https://arxiv.org/abs/1312.3869
  30. Wójtowicz J, Gieczewska KB. The Arabidopsis Accessions Selection Is Crucial: Insight from Photosynthetic Studies. International Journal of Molecular Sciences. 2021;22(18):9866. Available from: https://dx.doi.org/10.3390/ijms22189866
  31. Vikash B, Kulbhushan S. Parallel DNA Synthesis : Two PCR product from one DNA template. arXiv preprint arXiv:13123869. 2013. Available from: http://arxiv.org/abs/1309.3658
  32. Farrugia R, Portelli B, Grech I, Camilleri D, Casha O, Micallef J, et al. Air damping of high performance resonating micro-mirrors with angular vertical comb-drive actuators. Microsystem Technologies. 2019;p. 1–5. Available from: https://dx.doi.org/10.1007/s00542-019-04416-0
  33. Bevan M, Walsh S. The Arabidopsis genome: A foundation for plant research. Genome Research. 2005;15(12):1632–1642. Available from: https://dx.doi.org/10.1101/gr.3723405
  34. Charlesworth B, Sniegowski P, Stephan W. The evolutionary dynamics of repetitive DNA in eukaryotes. Nature. 1994;371(6494):215–220. Available from: https://dx.doi.org/10.1038/371215a0
  35. Shah N, Nute MG, Warnow T, Pop M. Misunderstood parameter of NCBI BLAST impacts the correctness of bioinformatics workflows. Bioinformatics. 2019;35(9):1613–1614. Available from: https://dx.doi.org/10.1093/bioinformatics/bty833


© 2022 Yadav et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.