• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2021, Volume: 14, Issue: 15, Pages: 1184-1188

Original Article

The Rotating Metrics with the Mass Function ˆM(u; r) in reference to the Theory of General Relativity

Received Date:18 February 2021, Accepted Date:19 April 2021, Published Date:30 April 2021


Background/Objectives: With reference to the theory of general relativity, the rotating metrics can be designed with mass function ˆM (u; r) . Methods/Statistical analysis: The methods/analysis adapted is the theoretical and mathematical analysis on the theory of general relativity. Findings: The line element can be found out with the help of mass function ˆM(u; r) following the find of the covariant complex null tetrad vectors for the rotating metrics. Then, the NP spin — coefficients, the Ricci scalars, and the Weyl scalars for the rotating metrics can be found out. The expanded form of the mass function ˆM(u; r) with (a=0) can be shown from Wang and Wu (1999). From the expended form of the mass function ˆM(u; r)with (a ̸= 0) , the NP coefficients can be derived. With the help of the scalar k, the surface gravity of the black hole is derived. Novelty/Applications: The findings of covariant complex null tetrad vectors for the rotating metrics, the NP spin — coefficients, the Ricci scalars, and the Weyl scalars are new analysis towards the theory of general relativity. Specific applications are the deep studies on the black hole and its surface gravity. It can be concluded that generally the rotating metric possesses a geodesic (k =e = 0), actually shear free (s = 0) , purely expanding (ˆq ̸ ( = 0) and a non-zero twistw2 ̸= 0) null vector la (Chandrasekhar, 1983). With the help of a scalar k, on a horizon of a Black hole, the surface gravity of the black hole is derived.

Keywords: The Mass Function; NP Spin – Coefficients; The Ricci Scalars; The Weyl Scalars; The Surface Gravity of the Black Hole


  1. Bousso R. The cosmological constant. General Relativity and Gravitation. 2008;40:607–637. Available from: https://dx.doi.org/10.1007/s10714-007-0557-5
  2. Cai RG, Ji JY, Soh KS. Action and entropy of black holes in spacetimes with a cosmological constant. Classical and Quantum Gravity. 1998;15(9):2783–2793. Available from: https://dx.doi.org/10.1088/0264-9381/15/9/023
  3. Chandrasekhar S. The Mathematical Theory of Black Holes. Oxford; New York. Oxford University Press. 1983.
  4. Hawking S, Ellis G. The Large Scale Structure of Space- Time. Cambridge. Cambridge University Press. 1973.
  5. Ibohal N. Rotating metrics admitting non-perfect fluids. General Relativity and Gravitation. 2005;37(1):19–51. Available from: https://dx.doi.org/10.1007/s10714-005-0002-6
  6. Ibohal N, Ishwarchandra N. Non - vacuum conformally flat spacetimes: Dark energy. Astrophysics and Space Science. 335(2):581–591. doi: 10.1007/s10509-011-0767-x
  7. Mallett RL. Radiating Vaidya metric imbedded in de Sitter space. Physical Review D. 1985;31(2):416–417. Available from: https://dx.doi.org/10.1103/physrevd.31.416
  8. Mallett R. Pion interferometry of quark - gluon plasma. Physical Review D. 1985;33(5). Available from: https://doi.org/10.1103/PhysRevD.33.1314
  9. Newman E, Penrose R. An Approach to Gravitational Radiation by a Method of Spin Coefficients. Journal of Mathematical Physics. 1962;3(3):566–578. Available from: https://dx.doi.org/10.1063/1.1724257
  10. Ibohal N. Non - stationary de Sitter cosmological models. International Journal of Modern Physics D. 2009;18:853–863. Available from: https://doi.org/10.1142/S0218271809014807
  11. Ibohal N. Non - stationary rotating black holes: Entropy and Hawking’s radiation. International Jounal of Modern Physics D. 2005;14(8). Available from: https://doi.org/10.1142/S0218271805007127
  12. Ibohal N. On the variable - charged black holes embedded into de Sitter space: Hawking’s radiation. International Jounal of Modern Physics D. 2005;14(6):973–994. Available from: https://doi.org/10.1142/S0218271805007188
  13. Hawking SW. Information loss in black holes. Physical Review D. 2005;72(8):84013. Available from: https://dx.doi.org/10.1103/physrevd.72.084013
  14. Hawking SW, Hertog T. Why does inflation start at the top of the hill? Physical Review D. 2002;66(12):1–11. Available from: https://dx.doi.org/10.1103/physrevd.66.123509
  15. Hawking S, Hartle J, Hertog T. No - boundary measure of the Universe. Physical Review Letter. 2008;100:1–4. Available from: https://doi.org/10.1103/PhysRevLett.100.201301
  16. Wang A, Wu Y. LETTER: Generalized Vaidya Solutions. General Relativity and Gravitation. 1999;31(1):107–114. Available from: https://dx.doi.org/10.1023/a:1018819521971


© 2021 Debnath & Ishwarchandra.This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.