• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2021, Volume: 14, Issue: 28, Pages: 2368-2379

Original Article

Influence of Change in the Apparent Contact Area, Temperature and Vacuum on Tribo Response of Al6061 and EN8 Pair

Received Date:07 June 2021, Accepted Date:04 July 2021, Published Date:24 August 2021


Objective: Aluminium and its alloys components are used in aero and space industries where in many cases trioboloading prevails. In space application, in addition to triboloading, the components should also perform in the absence of atmosphere. In the present investigation, attempted has been made to simulate the field conditions in the laboratory by sliding Al6061 alloy pin of different diameters in a vacuum at different temperatures using a vertically configured pin-on-disc test rig. Method: The pin diameters were 2, 4, and 6mm and the testing temperatures were 373, 473, and 573K. The normal contact pressure was 0.625MPa and the sliding speed was 0.5ms-1 and both were constant throughout the experiment. The coefficient of friction was monitored using a PC and the worn pin surface was studied in scanning-electronmicroscope. Findings: The result showed that the coefficient of friction at sliding temperatures 373 and 473K was found to be dependent on apparent contact area i.e., pin diameters 2, 4, and 6mm. The coefficient of friction was found to be 3.27 and 2.69 for pin diameter 2mm at temperature 373 and 473K whereas the coefficient of friction was of the range 1.36 to 0.33 for the pin of diameter 4 and 6mm. The scanning-electron-microscopic study revealed uniform plastic deformation for pin diameter of 2mm and non-uniform plastic deformation accompanied with abrasion extrusion phenomenon for the pin of diameters 4 and 6mm. The coefficient of friction at sliding temperature 573K was found to be insensitive to the apparent contact area. The coefficient of friction was in the range of 1.24 to 2.30. The SEM study revealed a large scale of non-uniform plastic deformation accompanied by abrasion, tearing of ridges, extrusion of both ridges, and entrapped wear debris. Novelty: It is a generic study for understanding the response of aluminium for tribo loading which.

Keywords: Pin on Disc (POD); Scanning Electron Microscope (SEM); High Temperature; Vacuum; Coefficient of Friction; Al6061 Aluminium Alloy 1


  1. Vilaseca M, Molas S, Casellas D. High temperature tribological behaviour of tool steels during slidingagainst aluminium. Wear. 2011;272:105–109. Available from: https://doi.org/10.1016/j.wear.2011.07.007
  2. Pujante J, Pelcastre L, Vilaseca M, Casellas D, Prakash B. Investigations into wear and galling mechanism of aluminium alloy-tool steel tribopair at different temperatures. Wear. 2013;308:193–198. Available from: http://dx.doi.org/10.1016/j.wear.2013.06.015
  3. Murakami T, Kajino S, Nakano S. High-temperature friction and wear properties of various sliding materials against aluminum alloy 5052. Tribology International. 2013;60:45–52. Available from: http://dx.doi.org/10.1016/j.triboint.2012.10.015
  4. Gharam AA, Lukitsch MJ, Balogh MP, Alpas A. High temperature tribological behaviour of carbon based (B4C and DLC) coatings insliding contact with aluminum. Thin Solid Films. 2010;519:1611–1617. Available from: https://doi.org/10.1016/j.tsf.2010.07.074
  5. Domitner J, Silvayeh Z, Sabet AS, Oksuz K, Pelcastre L, Hardell J. Characterization of wear and friction between tool steel and aluminum alloys in sheet forming at room temperature. Journal of Manufacturing Processes. 2021;64:774–784. Available from: https://doi.org/10.1016/j.jmapro.2021.02.007
  6. Selvam JDR, Dinaharan I, Mashinini P. High temperature sliding wear behavior of AA6061/fly ash aluminum matrix composites prepared using compocasting process. Tribology - Materials, Surfaces & Interfaces. 2007;11:39–46. Available from: http://dx.doi.org/10.1080/17515831.2017.1299324
  7. Ferreira T, Koga GY, Oliveira ILD, Shyintikiminami C, Botta WJ, Bolfarini C. Functionally graded aluminum reinforced with quasicrystal approximant phases - Improving the wear resistance at high temperatures. Wear. 2020;15:462–463. Available from: https://doi.org/10.1016/j.wear.2020.203507
  8. Essa FA, Elsheikh AH, Yu J, Elkady OA, Saleh B. Studies on the effect of applied load, sliding speedand temperature on the wear behavior of M50 steelreinforced with Al2O3 and / or grapheme nanoparticles. Journal of materials research andtechnology. 2021;12:283–303. Available from: https://doi.org/10.1016/j.jmrt.2021.02.082
  9. Zhu H, Min J, Ai Y, Chu D, Wang H, Wang H. The reaction mechanism and mechanical properties of the composites fabricated in an Al-ZrO2-C system. Materials Science and Engineering A. 2010;527:6178–6183. Available from: https://doi.org/10.1016/j.msea.2010.07.001
  10. Gecua R, Yurekturkb Y, Tekoglub E, Muhaffelb F, Karaaslan A. Improving wear resistance of 304 stainless steel reinforced AA7075aluminummatrix composite by micro-arc oxidation. Surface & Coatings Technology. 2019;368:15–24. Available from: https://doi.org/10.1016/j.surfcoat.2019.04.029.
  11. Zhu H, Jar C, Jinzhusong J, Zhao J, Z. High temperaturedryslidingfrictionandwearbehaviorofaluminummatrixcomposites (Al3Zrþa-Al2O3)/Al. Tribology International. 2012;48:78–86. Available from: https://doi.org/10.1016/j.triboint.2011.11.011
  12. Poirier D, Legoux JG, Irissou E, Gallant D, Jiang J. Tim Potter and James Boileau Performance Assessment of Protective Thermal Spray Coatings for Lightweight Al Brake Rotor Disks. J Therm Spray Tech. 2019;28:291–304. Available from: https://doi.org/10.1007/s11666-018-0805-0
  13. Shinde DM, Sahoo P, Davim JP. Tribological characterization of particulate-reinforced aluminum metal matrix nanocomposites: A review. Advanced Composites Letters . 2020;p. 1–28. Available from: https://doi.org/10.1177/2633366X20921403
  14. Kumar HSV, Kempaiah UN, Nagaral M, KR. Investigations on Mechanical Behaviour of Micro B4C Particles Reinforced Al6061 Alloy Metal Composites. Indian Journal Of Science And Technology . 14:1855–1863. Available from: https://doi.org/10.17485/IJST/v14i22.736
  15. Shafqat QA, Rafi-Ud-Din M, Shahzad M, Khan S, Mehmood, Waqar A, et al. Mechanical, tribological, and electrochemical behavior of hybrid aluminum matrix composite containing boron carbide (B4C) and graphene nanoplatelets. Journal of Materias. 2019;34(18). Available from: https:// 10.1557/jmr.2019.242
  16. Ranganatha S, Layer T. 2008. Available from: https://etd.iisc.ac.in/handle/2005/871


© 2021 Vinay et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.