• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology

Article

Indian Journal of Science and Technology

Year: 2023, Volume: 16, Issue: 23, Pages: 1754-1759

Original Article

Isolation of a - Cellulose from Nipa ( Nypa fruticans Wurmb) Frond using Physico-Chemical Treatment

Received Date:05 December 2022, Accepted Date:08 April 2023, Published Date:17 June 2023

Abstract

Objective: The aim of this research is to create a versatile approach to produce cellulose from nipa fronds, which are a sustainable resource. Methods: The study focuses on determining the amount of cellulose in nipa fronds, the effectiveness of a simplified physicochemical pretreatment, and the purity of the isolated nipa a-cellulose. The nipa biomass was pretreated using physical and chemical methods and analyzed through gravimetric analysis to determine its composition, delignification efficiency at varying concentrations of Sodium hydroxide (NaOH), and the purity of the isolated nipa a-cellulose (iNaC) using the National Renewable Energy Laboratory (NREL) protocol, ”NREL/TP-510- 42618”. The data was statistically analyzed using One-way Analysis of Variance. Findings: The results showed that increasing the concentration of NaOH led to positive responses in delignification, decreased hemicellulose, and increased recovery of cellulose. The study found that as the concentration of NaOH increased, the amount of a-cellulose recovered also increased. Treatment 4 (15% NaOH) and Treatment 2 (10% NaOH) produced 79% w/w and 77.45% w/w of a-cellulose, respectively. While Treatment 4 was highly effective in breaking down nipa biomass, a statistical analysis revealed that Treatment 2 produced comparable results in terms of producing pulp from nipa frond biomass without requiring higher concentrations of NaOH. This led to a reduction in chemical waste, making Treatment 2 a more sustainable option.

Keywords: a-cellulose; Nipa Frond; Biomass; Soda Treatment; Lignocellulosic; NREL protocol

References

  1. Cheablam O, Chanklap B. Sustainable Nipa Palm (<i>Nypa fruticans</i> Wurmb.) Product Utilization in Thailand. Scientifica. 2020;2020:1–10. Available from: https://doi.org/10.1155/2020/3856203
  2. Estira K. Factors Affecting Purchase Intention for Nipa products. Southern Asian Journal of Science and Technology. 2022;7:2672–2984. Available from: https://sajst.org/online/index.php/sajst/article/view/258
  3. Madigal J. Development of Nipa (Nypa fruticans) Sap Closed Collection Vessel. Agro Bali: Agricultural Journal. 2020;3(2):108–117. Available from: https://doi.org/10.37637/1b.v3i2.611
  4. Evelyn, Sunarno, Andrio D, Aman A, Ohi H. Nypa fruticans Frond Waste for Pure Cellulose Utilizing Sulphur-Free and Totally Chlorine-Free Processes. Molecules. 2020;27(17):5662. Available from: https://doi.org/10.3390/molecules27175662
  5. El-Sayed ESA, El-Sakhawy MS, El-Sakhawy MAMS. Non-wood fibers as raw material for pulp and paper industry. Nordic Pulp & Paper Research Journal. 2020;35(2):215–230. Available from: https://doi.org/10.1515/npprj-2019-0064
  6. Raj T, Chandrasekhar K, Banu R, Yoon JJ, Kumar G, Kim SH. Synthesis of γ-valerolactone (GVL) and their applications for lignocellulosic deconstruction for sustainable green biorefineries. Fuel. 2021;303:121333. Available from: https://doi.org/10.1016/j.fuel.2021.121333
  7. Zhou X, Liu J, Huang T, Bian H, Wang R, Sha J, et al. Near-complete enzymatic hydrolysis efficiency of Miscanthus using hydrotropic fractionation at atmospheric pressure. Industrial Crops and Products. 2020;149:112365. Available from: https://doi.org/10.1016/j.indcrop.2020.112365
  8. Zhang J, Zou D, Singh S, Cheng G. Recent developments in ionic liquid pretreatment of lignocellulosic biomass for enhanced bioconversion. Sustainable Energy & Fuels. 2021;5(6):1655–1667. Available from: https://doi.org/10.1039/d0se01802c
  9. Jadhav B, Roy R, Rahman MS, Raynie DE. Extraction and Depolymerization of Lignin from Pine Sawdust and Pistachio Shells. Biomass. 2022;2(4):348–357. Available from: https://doi.org/10.3390/biomass2040023
  10. Havstad MR. Biodegradable plastics. Plastic Waste and Recycling. 2020;p. 97–129. Available from: https://doi.org/10.1016/b978-0-12-817880-5.00005-0
  11. Shaikh HM, Anis A, Poulose AM, Al-Zahrani SM, Madhar NA, Alhamidi A, et al. Isolation and Characterization of Alpha and Nanocrystalline Cellulose from Date Palm (Phoenix dactylifera L.) Trunk Mesh. Polymers. 2021;13(11):1893. Available from: https://doi.org/10.3390/polym13111893

Copyright

© 2023 Cariaga et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)

DON'T MISS OUT!

Subscribe now for latest articles and news.