• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology

Article

Indian Journal of Science and Technology

Year: 2023, Volume: 16, Issue: Special Issue 1, Pages: 219-227

Original Article

Isolation of Restriction Enzyme from Sewage Samples Derived Bacillus sp.

Received Date:23 January 2023, Accepted Date:18 June 2023, Published Date:13 September 2023

Abstract

Objectives: The aim is to identify and characterize the restriction enzyme activity of bacteria from a sewage sample. Methods: The sample was plated on Nutrient Agar, Luria Bertani, and Tryptone Soy Broth Agar. The selected bacteria were screened for restriction enzyme activity and mass cultured. Extraction and purification of the enzyme were performed using column chromatography (PC 11 column, HTP column, and HPS column) and dialysis. Bacterial identification was performed using Gram’s staining and 16S rRNA gene sequencing. Findings: A total of 2138 bacterial colonies were retrieved using Nutrient Agar, Luria Bertani, and Tryptone Soy Broth Agar. From the enzymatic screening, bacterial isolate strain no. 8 was selected, and the extraction and purification of restriction enzymes from the selected bacterial strain were performed using column chromatography. After dialysis, the enzyme showed complete activity in 1:6 dilutions; hence, the unit of the enzyme is 6 units. The isolated bacterial strain was found to be a gram-positive rodshaped Bacillus after Gram’s staining was performed. The strain was identified using 16S rRNA gene sequencing technology, and it was found out that it has 97.91% homology with Bacillus sp. Novelty: The study reported sewage water derived Bacillus sp. having restriction enzyme.

Keywords: Bacillus sp; Column chromatography; Restriction enzymes; Sewage

References

  1. Kasman LM, Porter LD. Bacteriophages. StatPearls Publishing. Available from: https://www.ncbi.nlm.nih.gov/books/NBK493185
  2. Gupta A, Gupta R, Singh RL. Microbes and Environment. In: Principles and Applications of Environmental Biotechnology for a Sustainable Future. (pp. 43-84) Springer Singapore. 2016.
  3. Salcedo-Porras N, Umaña-Diaz C, Bitencourt RDOB, Lowenberger C. The Role of Bacterial Symbionts in Triatomines: An Evolutionary Perspective. Microorganisms. 2020;8(9):1–26. Available from: https://doi.org/10.3390/microorganisms8091438
  4. Schleifer KH. Classification of Bacteria and Archaea: Past, present and future. Systematic and Applied Microbiology. 2009;32(8):533–542. Available from: https://doi.org/10.1016/j.syapm.2009.09.002
  5. Sordi LD, Lourenço M, Debarbieux L. The battle within: interactions of bacteriophages and bacteria in the gastrointestinal tract. Cell Host & Microbe. 2019;25(2):210–218. Available from: https://doi.org/10.1016/j.chom.2019.01.018
  6. Simmonds P, Aiewsakun P. Virus classification – where do you draw the line? Archives of Virology. 2018;163:2037–2046. Available from: https://doi.org/10.1007/s00705-018-3938-z
  7. Jurczak-Kurek A, Gąsior T, Nejman-Faleńczyk B, Bloch S, Dydecka A, Topka G, et al. Biodiversity of bacteriophages: morphological and biological properties of a large group of phages isolated from urban sewage. Scientific Reports. 2016;6(34338):1–17. Available from: https://doi.org/10.1038/srep34338
  8. Fayez MS, Hakim TA, Zaki BM, Makky S, Abdelmoteleb M, Essam K, et al. Morphological, biological, and genomic characterization of Klebsiella pneumoniae phage vB_Kpn_ZC2. Virology Journal. 2023;20(86):1–16. Available from: https://virologyj.biomedcentral.com/articles/10.1186/s12985-023-02034-x
  9. Ballesté E, Blanch AR, Muniesa M, García-Aljaro C, Rodríguez-Rubio L, Martín-Díaz J, et al. Bacteriophages in sewage: abundance, roles, and applications. FEMS Microbes. 2022;3:1–12. Available from: https://doi.org/10.1093/femsmc/xtac009
  10. Enam SU, Cherry JL, Leonard SR, Zheludev IN, Lipman DJ, Fire AZ. Restriction Endonuclease-Based Modification-Dependent Enrichment (REMoDE) of DNA for Metagenomic Sequencing. Applied and Environmental Microbiology. 2023;89(1):1–15. Available from: https://doi.org/10.1128/aem.01670-22
  11. Roberts RJ, Macelis D. REBASE--restriction enzymes and methylases. Nucleic Acids Research. 2001;29(1):268–269. Available from: https://doi.org/10.1093/nar/29.1.268
  12. Saravanan M, Vasu K, Kanakaraj R, Rao DN, Nagaraja VR. R.KpnI, an HNH superfamily REase, exhibits differential discrimination at non-canonical sequences in the presence of Ca2+ and Mg2+. Nucleic Acids Research. 2007;35(8):2777–2786. Available from: https://doi.org/10.1093/nar/gkm114
  13. Pingoud A, Wilson GG, Wende W. Type II restriction endonucleases—a historical perspective and more. Nucleic Acids Research. 2014;42(12):7489–7527. Available from: https://doi.org/10.1093/nar/gku447
  14. Kennedy MA, Hosford CJ, Azumaya CM, Luyten YA, Chen M, Morgan RD, et al. Structures, activity and mechanism of the Type IIS restriction endonuclease PaqCI. Nucleic Acids Research. 2023;51(9):4467–4487. Available from: https://doi.org/10.1093/nar/gkad228
  15. Felice FD, Micheli G, Camilloni G. Restriction enzymes and their use in molecular biology: An overview. Journal of Biosciences. 2019;44(38):1–8. Available from: https://doi.org/10.1007/s12038-019-9856-8
  16. Podgórska B, Kujawska G, Skurzewski M, Batsko O, Kaczorowski T. A rapid and simple method for detection of type II restriction endonucleases in cells of bacteria with high activity of nonspecific nucleases. Acta Biochimica Polonica. 2012;59(4):669–672. Available from: https://doi.org/10.18388/abp.2012_2108
  17. Bickle TA, Pirrotta V, Imber R. A simple, general procedure for purifying restriction endonucleases. Nucleic Acids Research. 1977;4(8):2561–2572. Available from: https://doi.org/10.1093/nar/4.8.2561
  18. Kadri K. Polymerase Chain Reaction (PCR): Principle and Applications. In: Nagpal ML, Boldura OM, Baltă C, Enany S., eds. Synthetic Biology - New Interdisciplinary Science. (pp. 1-206) IntechOpen. 2019.
  19. Puchkova LI, Ushakova TA, Mikhailova VK, Serov GD, Krivopalova GN, Repin VE. Testing and isolation of high-purity restriction endonucleases. Applied Biochemistry and Microbiology. 2002;38:15–19. Available from: https://doi.org/10.1023/A:1013236218350
  20. Nag N, Khan H, Tripathi T. Strategies to improve the expression and solubility of recombinant proteins in E. coli. Advances in Protein Molecular and Structural Biology Methods. 2022;p. 1–12. Available from: https://doi.org/10.1016/B978-0-323-90264-9.00001-5
  21. Zhang J, Wang J, Fang C, Song F, Xin Y, Qu L, et al. Bacillus oceanisediminis sp. nov., isolated from marine sediment. International Journal of Systematic and Evolutionary Microbiology. 2010;60(12):2924–2929. Available from: https://doi.org/10.1099/ijs.0.019851-0

Copyright

© 2023 Lalhriatpuii et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)

DON'T MISS OUT!

Subscribe now for latest articles and news.