• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2024, Volume: 17, Issue: 18, Pages: 1906-1913

Original Article

Mango Tree Dataset for Yield Estimation: Some Exploratory Analysis

Received Date:05 March 2024, Accepted Date:07 April 2024, Published Date:03 May 2024


Objectives: Employing computer vision methods for yield estimation requires standard datasets. However, unavailability of such a dataset in the literature limits the researchers from evaluating and comparing the performance of their proposed algorithms. In this paper, a benchmark of mango tree dataset is introduced. Methods: The dataset is gathered over a 5-month period, starting from the fruit's blossoming stage and ending with its ripening stage. There are 21,000 photos of 4 distinct mango tree varieties in the dataset. From each cultivar, images are captured with different views, distances, and daylight conditions. Further, preprocessing, and exploratory analysis of the dataset are carried out by extracting a few global features such as colors, textures, and histograms for intra-class and inter-class mango trees. Findings: The analysis of the collected dataset with different color layers by extracting a few global features and classification of the cultivars of mango trees and, based on the results obtained, the optimal layer of color is attained for the further yield estimation process. Novelty: Exploratory analysis of a novel temporal mango crop dataset is executed, and a color analysis classification method is proposed to aid in the early estimation of mango fruit crop yields.

Keywords: Mango Fruit, Yield Estimation, Temporal Dataset, Feature Extraction, Tree Classification


  1. Rimpika, Anushi, Manasa S, Anusha KN, Sharma S, Thakur A, et al. An Overview of Precision Farming. International Journal of Environment and Climate Change. 2023;13(12):441–456. Available from: https://dx.doi.org/10.9734/ijecc/2023/v13i123701
  2. Patil P, Athavale P, Bothara M, Tambolkar S, More A. Crop Selection and Yield Prediction using Machine Learning Approach. Current Agriculture Research Journal. 2023;11(3):968–980. Available from: https://dx.doi.org/10.12944/carj.11.3.26
  3. Araya-Alman M, Leroux C, Acevedo-Opazo C, Guillaume S, Valdés-Gómez H, Verdugo-Vásquez N, et al. A new localized sampling method to improve grape yield estimation of the current season using yield historical data. Precision Agriculture. 2019;20(2):445–459. Available from: https://dx.doi.org/10.1007/s11119-019-09644-y
  4. Aquino A, Ponce JM, Noguera M, Andújar JM. Olive-fruit yield estimation by modelling perceptual visual features. Computers and Electronics in Agriculture. 2023;214. Available from: https://dx.doi.org/10.1016/j.compag.2023.108361
  5. Lu J, Chen P, Yu C, Lan Y, Yu L, Yang R, et al. Lightweight green citrus fruit detection method for practical environmental applications. Computers and Electronics in Agriculture. 2023;215. Available from: https://dx.doi.org/10.1016/j.compag.2023.108205
  6. Ferrer-Ferrer M, Ruiz-Hidalgo J, Gregorio E, Vilaplana V, Morros JR, Gené-Mola J. Simultaneous fruit detection and size estimation using multitask deep neural networks. Biosystems Engineering. 2023;233:63–75. Available from: https://dx.doi.org/10.1016/j.biosystemseng.2023.07.010
  7. Mirbod O, Choi D, Heinemann PH, Marini RP, He L. On-tree apple fruit size estimation using stereo vision with deep learning-based occlusion handling. Biosystems Engineering. 2023;226:27–42. Available from: https://dx.doi.org/10.1016/j.biosystemseng.2022.12.008
  8. Maheswari P, Raja P, Hoang VT. Intelligent yield estimation for tomato crop using SegNet with VGG19 architecture. Scientific Reports. 2022;12(1):1–11. Available from: https://dx.doi.org/10.1038/s41598-022-17840-6
  9. Raj SB, Shankar G, Murugesan S, Raju MN, Mohan E, Rani PJI. Exploratory Data Analysis on Blueberry yield through Bayes and Function Models. International Journal on Recent and Innovation Trends in Computing and Communication. 2023;11(11s):634–641. Available from: https://dx.doi.org/10.17762/ijritcc.v11i11s.8299


© 2024 Neethi & Raviraj. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.