• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2022, Volume: 15, Issue: 39, Pages: 1971-1977

Original Article

Markov Chain: A Novel Tool for Electronic Ripple Analysis

Received Date:21 July 2022, Accepted Date:19 September 2022, Published Date:15 October 2022


Objective: To delineate a novel surrogate approach to analyse the ripple component by constructing a complex network using the Markov model. Methods: Adjacency matrices (A) are constructed from the digital storage oscilloscope output signal of the Full-Wave (FWR) and Half-Wave Rectifiers (HWR) without and with a filter. The centrality measures - indegree, outdegree, in closeness, out closeness, Weighted Network Clustering Coefficient (WNCC) – are also computed for the Markov chain. Findings: With the increase of filter capacitance, more elements in the adjacency matrix become zero. Finally, only one matrix element corresponding to A10;10 remains nonzero for FWR and A20;20 for HWR, indicating the total rectification of the signal at 10 volts. The Markov chain analysis shows that as the ripple component decreases, the number of unconnected nodes increases and the self-loop of the last node increases. For the rectifier output without filtering, it is found that all the nodes are interconnected through edges. The greater the filtering efficiency, the greater the indegree and outdegree, and the lesser the incloseness, outcloseness and WNCC measures.

Keywords: Complex network; Markov chain; Rectifier; Time series; Ripple


  1. Biggs J, Myers J, Kufel J, Ozer E, Craske S, Sou A, et al. A natively flexible 32-bit Arm microprocessor. Nature. 2021;595(7868):532–536. Available from: http://www.nature.com/articles/s41586-021-03625-w
  2. Kalfa M, Gok M, Atalik A, Tegin B, Duman TM, Arikan O. Towards goal-oriented semantic signal processing: Applications and future challenges. Digital Signal Processing. 2021;119:103134. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1051200421001731
  3. Kostić SM, Simić MI, Kostić MV. Social Network Analysis and Churn Prediction in Telecommunications Using Graph Theory. Entropy. 2020;22(7):753. Available from: https://www.mdpi.com/1099-4300/22/7/753
  4. Petrovic M, Liegeois R, Bolton TAW, Ville DVD. Community-Aware Graph Signal Processing: Modularity Defines New Ways of Processing Graph Signals. IEEE Signal Processing Magazine. 2020;37(6):150–159. Available from: https://ieeexplore.ieee.org/document/9250377/
  5. Ding R, Ujang N, Hamid HB, Manan MSA, Li R, Albadareen SSM, et al. Application of Complex Networks Theory in Urban Traffic Network Researches. Networks and Spatial Economics. 2019;19(4):1281–1317. Available from: http://link.springer.com/10.1007/s11067-019-09466-5
  6. Anderson T, Dragićević S. Complex spatial networks: Theory and geospatial applications. Geography Compass. 2020;14(9). Available from: https://onlinelibrary.wiley.com/doi/10.1111/gec3.12502
  7. Koutrouli M, Karatzas E, Paez-Espino D, Pavlopoulos GA. A Guide to Conquer the Biological Network Era Using Graph Theory. Front Bioeng Biotechnol. 2020;8. Available from: https://www.frontiersin.org/article/10.3389/fbioe.2020.00034/full
  8. Ďuriš V, Chertanovskiy AG, Chumarov SG, Kartuzov AV. Calculation of Electric Circuits Using the Fast Kirchhoff Method. TEM Journal. 2022;p. 75–81. Available from: https://www.temjournal.com/content/111/TEMJournalFebruary2022_75_81.html
  9. Carugno G, Vivo P, Coghi F. Graph-combinatorial approach for large deviations of Markov chains. Journal of Physics A: Mathematical and Theoretical. 2022;55(29):295001. Available from: https://iopscience.iop.org/article/10.1088/1751-8121/ac79e6
  10. Andreao RV, Dorizzi B, Boudy J. ECG signal analysis through hidden Markov models. IEEE Transactions on Biomedical Engineering. 2006;53(8):1541–1549. Available from: http://ieeexplore.ieee.org/document/1658148/
  11. Tian H, Wang XFF, Mohammad MA, Gou GYY, Wu F, Yang Y, et al. A hardware Markov chain algorithm realized in a single device for machine learning. Nature Communications. 2018;9(1):4305. Available from: http://www.nature.com/articles/s41467-018-06644-w
  12. Gomes RCM, Vitorino MA, Acevedo-Bueno DA, Correa MBDR. Three-Phase AC–AC Converter With Diode Rectifier for Induction Heating Application With Improved Input Current Quality and Coil Modeling. IEEE Transactions on Industry Applications. 2021;57(3):2673–2681. Available from: https://ieeexplore.ieee.org/document/9376300/
  13. Zhang Y, Fang J, Gao F, Gao S, Rogers DJ, Zhu X. Integrated High- and Low-Frequency Current Ripple Suppressions in a Single-Phase Onboard Charger for EVs. IEEE Transactions on Power Electronics. 2021;36(2):1717–1729. Available from: https://ieeexplore.ieee.org/document/9130146/
  14. Sankararaman S. Untangling the graph based features for lung sound auscultation. Biomedical Signal Processing and Control. 2022;71:103215.
  15. Renjini A, Swapna MS, Raj V, Kumar KS, Sankararaman S. Complex network-based pertussis and croup cough analysis: A machine learning approach. Physica D: Nonlinear Phenomena. 2022;433:133184.
  16. Zou Y, Donner RV, Marwan N, Donges JF, Kurths J. Complex network approaches to nonlinear time series analysis. Physics Reports. 2019;787:1–97. Available from: https://doi.org/10.1016/j.physrep.2018.10.005


© 2022 Vijesh et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.