• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology

Article

Indian Journal of Science and Technology

Year: 2024, Volume: 17, Issue: 16, Pages: 1713-1723

Original Article

Mathematical Simulation for MHD Casson Convective Nanofluid Flow Induced by 3D Permeable Sheet with Chemical Effect

Received Date:16 January 2024, Accepted Date:28 February 2024, Published Date:19 April 2024

Abstract

Objectives: Current manuscript focuses on examination of chemical reaction and heat generation impacts on 3D MHD non-Newtonian nanofluid flow with convective boundary conditions induced by permeable sheet. Additionally, Brownian motion, non-Newtonian heating and thermophoretic processes as used for this study. Methods: A computational programme, MATLAB has been used for solving the system of O.D.Es with the help of ODE45 solver. The Runge Kutta Fehlberg approach is implemented to calculate the answer to the expression for temperature, velocity, and nanoparticle concentration after the shooting process. Findings: For a variety of fluid parameters, the temperature, concentration of nanoparticles, and dimensionless velocities are shown and examined, including permeability parameter , magnetic , stretching ratio parameter , Lewis number , Brownian motion and Prandtl number , thermal Biot number , Casson fluid parameter , chemical reaction parameter . The temperature is found to increase with an enhance in the thermal Biot number and to reduce with a greater Prandtl number and stretching ratio parameter. Novelty: Although the immense significance and frequent use of nanofluids in industries and technology, no effort has been made to explore the chemical influence on MHD Casson fluid flow using a three-dimensional permeable sheet. Through similarity transformations, the Runge-Kutta Fehlberg technique converts mass, momentum, and energy conservation equations into ODEs and incorporates boundary conditions. Skin friction and the heat transmission rate past an extending surface, which have an impact on technology and production, can be predicted using the results of this study.

Keywords: Chemical reaction, Buongiorno's model, Nanofluid, Biot numbers, 3D permeable sheet

References

  1. Makinde OD, Aziz A. Boundary layer flow of a nanofluid past a stretching sheet with a convective boundary condition. International Journal of Thermal Sciences. 2011;50(7):1326–1332. Available from: https://doi.org/10.1016/j.ijthermalsci.2011.02.019
  2. Ibrahim W, Anbessa T. Three-Dimensional MHD Mixed Convection Flow of Casson Nanofluid with Hall and Ion Slip Effects. Mathematical Problems in Engineering. 2020;2020:1–15. Available from: https://doi.org/10.1155/2020/8656147
  3. Arulmozhi S, Sukkiramathi K, Santra SS, Edwan R, Fernandez-Gamiz U, Noeiaghdam S. Heat and mass transfer analysis of radiative and chemical reactive effects on MHD nanofluid over an infinite moving vertical plate. Results in Engineering. 2022;14:100394. Available from: https://doi.org/10.1016/j.rineng.2022.100394
  4. Hussain S, Rasheed K, Ali A, Vrinceanu N, Alshehri A, Shah Z. A sensitivity analysis of MHD nanofluid flow across an exponentially stretched surface with non-uniform heat flux by response surface methodology. Scientific Reports. 2022;12(1):1–17. Available from: https://doi.org/10.1038/s41598-022-22970-y
  5. Kumar YS, Hussain S, Raghunath K, Ali F, Guedri K, Eldin SM, et al. Numerical analysis of magnetohydrodynamics Casson nanofluid flow with activation energy, Hall current and thermal radiation. Scientific Reports. 2023;13(1):1–19. Available from: https://doi.org/10.1038/s41598-023-28379-5
  6. Ramesh GK, Prasannakumara BC, Gireesha BJ, Rashidi MM. Casson Fluid Flow near the Stagnation Point over a Stretching Sheet with Variable Thickness and Radiation. Journal of Applied Fluid Mechanics. 2016;9(3):1115–1122. Available from: https://www.jafmonline.net/article_1689_d30bc2af3cee1df95fb95965d92ae990.pdf
  7. Madhukesh JK, Ramesh GK, Shehzad SA, Chapi S, Kushalappa IP. Thermal transport of MHD Casson–Maxwell nanofluid between two porous disks with Cattaneo–Christov theory. Numerical Heat Transfer, Part A: Applications. 2023. Available from: https://doi.org/10.1080/10407782.2023.2214322
  8. Ramesh GK, Roopa GS, Rauf A, Shehzad SA, Abbasi FM. Time-dependent squeezing flow of Casson-micropolar nanofluid with injection/suction and slip effects. International Communications in Heat and Mass Transfer. 2021;126:105470. Available from: https://doi.org/10.1016/j.icheatmasstransfer.2021.105470
  9. Madhukesh JK, Ramesh GK, Prasannakumara BC, Shehzad SA, Abbasi FM. Bio-Marangoni convection flow of Casson nanoliquid through a porous medium in the presence of chemically reactive activation energy. Applied Mathematics and Mechanics. 2021;42(8):1191–1204. Available from: https://doi.org/10.1007/s10483-021-2753-7
  10. Buongiorno J. Convective Transport in Nanofluids. Journal of Heat Transfer. 2006;128(3):240–250. Available from: https://doi.org/10.1115/1.2150834
  11. Khan JA, Mustafa M, Hayat T, Alsaedi A. Three-dimensional flow of nanofluid over a non-linearly stretching sheet: An application to solar energy. International Journal of Heat and Mass Transfer. 2015;86:158–164. Available from: https://doi.org/10.1016/j.ijheatmasstransfer.2015.02.078
  12. Sulochana C, Ashwinkumar GP, Sandeep N. Similarity solution of 3D Casson nanofluid flow over a stretching sheet with convective boundary conditions. Journal of the Nigerian Mathematical Society. 2016;35(1):128–141. Available from: https://doi.org/10.1016/j.jnnms.2016.01.001
  13. Nadeem S, Hussain ST. Flow and heat transfer analysis of Williamson nanofluid. Applied Nanoscience. 2014;4(8):1005–1012. Available from: https://doi.org/10.1007/s13204-013-0282-1
  14. Mabood F, Khan WA, Ismail AIM. MHD boundary layer flow and heat transfer of nanofluids over a nonlinear stretching sheet: A numerical study. Journal of Magnetism and Magnetic Materials. 2015;374:569–576. Available from: https://doi.org/10.1016/j.jmmm.2014.09.013

Copyright

© 2024 Dang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)

DON'T MISS OUT!

Subscribe now for latest articles and news.