• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2022, Volume: 15, Issue: 42, Pages: 2267-2274

Original Article

Medical Image Fusion Using CNN with Automated Pooling

Received Date:07 September 2022, Accepted Date:10 October 2022, Published Date:15 November 2022


Background/Objectives : The purpose of this study is to demonstrate that the most appropriate pooling is selected among different types of pooling techniques in CNN, for different applications related to image fusion. The work presents a novel method by which pooling is selected automatically as per the needs of the application. Methods: This study presents the use of multiple functions for pooling techniques which are selected automatically based on the input images to produce fused optimum output. This will make the classification process much easier and better end results are obtained. Finding: The developed automated pooling method performs better concerning processing time and produces optimal output for parameters like Peak Noise Signal Ratio, Mean Square Error, Fusion Factor, Fusion Fidelity, and Visual Information Fidelity in comparison to existing methods like Discrete Wavelet Transformation, Non-Subsampled Contourlet Transform, and Principal Component Analysis. Novelty: The novel technique presented in this paper for automated selection of pooling method provides optimal dimension reduction in both the phases of CNN, and hence allows CNN to converge faster and optimally.

Keywords: Image Fusion; CNN; Machine Learning; Pooling; Medical Image Analysis


  1. Shibu DS, Priyadharsini SS. Multi scale decomposition based medical image fusion using convolutional neural network and sparse representation. Biomedical Signal Processing and Control. 2021;69:102789. Available from: https://doi.org/10.1016/j.bspc.2021.102789
  2. Zhang H, Xu H, Tian X, Jiang J, Ma J. Image fusion meets deep learning: A survey and perspective. Information Fusion. 2021;76:323–336. Available from: https://doi.org/10.1016/j.inffus.2021.06.008
  3. Wang L, Chang C, Liu Z, Huang J, Liu C, Liu C. A Medical Image Fusion Method Based on SIFT and Deep Convolutional Neural Network in the SIST Domain. Journal of Healthcare Engineering. 2021;2021:1–8. Available from: https://doi.org/10.1155/2021/9958017
  4. Liu S, Wang M, Yin L, Sun X, Zhang YDD, Zhao J. Two-Scale Multimodal Medical Image Fusion Based on Structure Preservation. Frontiers in Computational Neuroscience. 2022;15. Available from: https://doi.org/10.3389/fncom.2021.803724
  5. Wang R, Lei T, Cui R, Zhang B, Meng H, Nandi AK. Medical image segmentation using deep learning: A survey. IET Image Processing. 2022;16(5):1243–1267. Available from: https://doi.org/10.1049/ipr2.12419
  6. Wang K, Zheng M, Wei H, Qi G, Li Y. Multi-Modality Medical Image Fusion Using Convolutional Neural Network and Contrast Pyramid. Sensors. 2020;20(8):2169. Available from: https://doi.org/10.3390/s20082169
  7. Wang Z, Li X, Duan H, Su Y, Zhang X, Guan X. Medical image fusion based on convolutional neural networks and non-subsampled contourlet transform. Expert Systems with Applications. 2021;171:114574. Available from: https://doi.org/10.1016/j.eswa.2021.114574
  8. Rajendran N, Siyamalan M, Ramanan A, Wang R. Pooling in convolutional neural networks for medical image analysis: a survey and an empirical study. Neural Computing and Applications. 2022;34(1):5321–5347. Available from: https://doi.org/10.10 07/s00521-022-06953-8
  9. Kaur M, Singh D. Fusion of medical images using deep belief networks. Cluster Computing. 2020;23(2):1439–1453. Available from: https://doi.org/10.1007/s10586-019-02999-x
  10. Wei Z, Zhang J, Liu L, Zhu F, Shen F, Zhou Y, et al. Building Detail-Sensitive Semantic Segmentation Networks With Polynomial Pooling. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2019;p. 7108–7116. Available from: https://doi.org/10.1109/CVPR.2019.00728
  11. Xu H, Ma J, Fusion EM. An unsupervised enhanced medical image fusion network. Information Fusion. 2021;76:177–186. Available from: https://doi.org/10.1016/j.inffus.2021.06.001
  12. Yousif AS, Omar Z, Sheikh UU. An improved approach for medical image fusion using sparse representation and Siamese convolutional neural network. Biomedical Signal Processing and Control. 2022;72(Part B):103357. Available from: https://doi.org/10.1016/j.bspc.2021.103357
  13. Abas AI, Koçer HE, Baykan NA. Medical image fusion with convolutional neural network in multiscale transform domain. Turkish Journal of Electrical Engineering and Computer Sciences. 2021;29(SI-1):2780–2794. Available from: https://doi.org/10.3906/elk-2105-170
  14. Abdelrahman L, Ghamdi AM, Collado, Mesa F, Mottaleb A, M. Convolutional neural networks for breast cancer detection in mammography: A survey. Comput Biol Med. 2021;131:104248. Available from: https://doi.org/10.1016/j.compbiomed.2021.104248
  15. Bhutto JA, Tian L, Du Q, Sun Z, Yu L, Tahir MF. CT and MRI Medical Image Fusion Using Noise-Removal and Contrast Enhancement Scheme with Convolutional Neural Network. Entropy. 2022;24(3):393. Available from: https://doi.org/10.3390/e24030393
  16. mohamed Na, Tamimi MSHA. Image Fusion Using A Convolutional Neural Network. Solid State Technology. 2020;63(6):13149–13162.
  17. Zhang Y, Liu Y, Sun P, Yan H, Zhao X, Zhang L. IFCNN: A general image fusion framework based on convolutional neural network. Information Fusion. 2020;54:99–118. Available from: https://doi.org/10.1016/j.inffus.2019.07.011
  18. Polinati S, Bavirisetti DP, Rajesh NVPSK, Dhuli R. Multimodal Medical Image Fusion Based on Content-based and PCA-sigmoid. Current Medical Imaging. 2022;18(5):548–556. Available from: http://dx.doi.org/10.2174/1573405617666211004114726
  19. Rao BSN, Raju NVK, Dhanush M, Harshith PNSM, Mehdi MJ. MRI and Spect Medical Image Fusion using Wavelet Transform. 2022 7th International Conference on Communication and Electronics Systems (ICCES). 2022;2022:1690–1696. Available from: https://doi.org/10.1109/ICCES54183.2022.9835857.
  20. Iqbal C, Ghafoor A, Bakhshi AD, Saghir NJ. Medical image fusion using non subsampled contourlet transform and iterative joint filter. Multimedia Tools Applications. 2022;81:4495–4509. Available from: https://doi.org/10.1007/s11042-021-11753-8
  21. Li Y, Zhao J, Lv Z, Pan Z. Multimodal Medical Supervised Image Fusion Method by CNN. Frontiers in Neuroscience. 2021;15(638976). Available from: https://doi.org/10.3389/fnins.2021.638976
  22. Parvathy VS, Pothiraj S, Sampson J. A novel approach in multimodality medical image fusion using optimal shearlet and deep learning. International Journal of Imaging System and Technology. 2020;23(4):847–859. Available from: https://doi.org/10.1002/ima.22436
  23. Chang J, Zhang L, Gu N, Zhang X, Ye M, Yin R, et al. A mix-pooling CNN architecture with FCRF for brain tumor segmentation. Journal of Visual Communication and Image Representation. 2019;58(1):316–322. Available from: https://doi.org/10.1016/j.jvcir.2018.11.047
  24. Li Y, Zhao J, Lv Z, Li J. Medical image fusion method by deep learning. International Journal of Cognitive Computing in Engineering. 2021;2(1):21–29. Available from: https://doi.org/10.1016/j.ijcce.2020.12.004
  25. Mohan R, Ganapathy K, Arunmozhi R. Brain tumor classification of magnetic resonance Images using novel CNN-based medical image Analysis and Detection network in comparison with AlexNet. Journal of Population Therapeutics and Clinical Pharmacology. 2022;29(1):e97–e108. Available from: https://doi.org/10.47750/jptcp.2022.898


© 2022 Trivedi & Sanghvi. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.