• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology

Article

Indian Journal of Science and Technology

Year: 2022, Volume: 15, Issue: 36, Pages: 1764-1768

Original Article

Microbial Profile and Physico-chemical Analysis of the Excreta of Dendrocygna javanica and Anas platyrhynchos domesticus

Received Date:18 July 2022, Accepted Date:25 August 2022, Published Date:19 September 2022

Abstract

Objective: To evaluate the physico-chemical composition and the presence of potentially useful bacterial to be used as biofertilizer in the excreta of Dendrocygna javanica and Anas platyrhynchos domesticus. Methodology: The microbial culture and physico-chemical analysis was done at the department of botany, Gauhati university. Six different media were taken for microbial growth. After 24 hours of observation microbial colonies were counted and recorded. For physico-chemical analysis four parameters were taken viz., organic carbon, ash content, moisture content and pH, as those four components are essential for soil and plant growth. Findings: The excreta of Dendrocygna javanica show abundant growth of nitrogen fixing bacteria, less fastidious bacteria, yeast, moulds, Acetenomycetes and phosphate solubilizing bacteria. Physico chemical analysis have also shown favourable result against Dendrocygna javanica, indicating the biofertilizer nature of its excreta. Novelty: There is limited literature available concerning the microbial profile and physico chemical analysis of faeces of Dendrocygna javanica and Anas platyrhynchos domesticus. Infect, the present study provided the guidance for culturing and conserving these two duck species since these have a good possibility as bio fertilizers.

Keywords: Dendrocygna javanica; Anas platyrhynchos domesticus; microbial culture; physicochemical; excreta; biofertilizer

References

  1. El-Hack A, El-Saadony ME, Alqhtani MT, Swelum AH, Salem AA, Elbestawy HM, et al. The relationship among avian influenza, gut microbiota and chicken immunity: an updated overview. Poultry Science. 2022;110(9). Available from: https://doi.org/10.1016/j.psj.2022.102021
  2. Gao L, Liu L, Du C, Hou Q. Comparative Analysis of Fecal Bacterial Microbiota of Six Bird Species. Frontiers in Veterinary Science. 2021;8:791287. Available from: https://doi.org/10.3389/fvets.2021.791287
  3. Khan MF, Khan H. Isolation of bacteria from agricultural soil and screening it for PGPR traits. International Journal of Advance Research. 2019;5(5). Available from: www.ijariit.com
  4. Zeyede A. Optimization of the analytical method for the determination of organic matter. Journal of Soil Science and Environmental Management. 2020;11(1):1–5. Available from: http://doi.org/10.5897/JSSEM2019.0784
  5. Salunke M, Sondge DB, Yadav S, Warkhade R, Rathod R, KS. Alkaline phosphatase production by Enterobacter hormaechei isolated from bird’s fecal waste and its optimization. International Journal of Advanced Science and Technology. 2020;29(8):3606–3613. Available from: https://www.researchgate.net/publication/354401642
  6. Datcu AD, Ianovici N, Sala F. A method for estimating nitrogen supply index in crop plants: case study on wheat. Journal of Central European Agriculture. 2020;21(3):569–576. Available from: http://doi.org/10.5513/JCEA01/21.3.2760
  7. Qiu Z, Li M, Song L, Wang C, Yang S, Yan Z, et al. Study on nitrogen-retaining microbial agent to reduce nitrogen loss during chicken manure composting and nitrogen transformation mechanism. Journal of Cleaner Production. 2021;285:124813. Available from: https://doi.org/10.1016/j.jclepro.2020.124813
  8. Hernández-Fernández M, Cordero-Bueso G, Ruiz-Muñoz M, Cantoral JM. Culturable Yeasts as Biofertilizers and Biopesticides for a Sustainable Agriculture: A Comprehensive Review. Plants. 2021;10(5):822. Available from: https://doi.org/10.3390/plants10050822
  9. Hozzein WN, Abuelsoud W, Wadaan MAM, Shuikan AM, Selim S, Jaouni SA, et al. Exploring the potential of actinomycetes in improving soil fertility and grain quality of economically important cereals. Science of The Total Environment. 2019;651(2):2787–2798. Available from: https://doi.org/10.1016/j.scitotenv.2018.10.048
  10. Hanania J, Sheardown A, Stenhouse K, Donev J, Donev J. Energy Education-Ash-2019. Available from: https://energyeducation.ca/encyclopedia/Ash (accessed )
  11. Tavakkoli E, Uddin S, Rengasamy P, Mcdonald GK. Field applications of gypsum reduce pH and improve soil C in highly alkaline soils in southern Australia’s dryland cropping region. Soil Use and Management. 2022;38(1):466–477. Available from: https://doi.org/10.1111/sum.12756
  12. Xu T, Weng B, Yan D, Wang K, Li X, Bi W, et al. Wetlands of International Importance: Status, Threats, and Future Protection. International Journal of Environmental Research and Public Health. 2019;16(10):1818. Available from: https://doi.org/10.3390/ijerph16101818
  13. Ekumah B, Armah FA, Afrifa EKA, Aheto DW, Odoi JO, Afitiri AR. Assessing land use and land cover change in coastal urban wetlands of international importance in Ghana using Intensity Analysis. Wetlands Ecology and Management. 2020;28(2):271–284. Available from: https://doi.org/10.1007/s11273-020-09712-5

Copyright

© 2022 Medhi et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Published By Indian Society for Education and Environment (iSee

DON'T MISS OUT!

Subscribe now for latest articles and news.