• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2020, Volume: 13, Issue: 26, Pages: 2668-2677

Original Article

Mining educational data in predicting the influence of Mathematics on the programming performance of University students

Received Date:25 May 2020, Accepted Date:26 June 2020, Published Date:30 July 2020


Objectives: The aim of this study was to investigate the influence of mathematics to the programming performance of Information Technology students and identified the relationships of their performance in programming among genders. Methods/Statistical analysis: The study utilized the data mining method using J48 classification algorithm and descriptive-correlation design. The data were gathered from Electronic Database of the University. Failure ratings of the students were removed as significant outliers and came up with 73 data sets. Pearson r and Point Biserial Correlations were used with 0.05 level of significance alpha to test the correlation between continuous measures of independent and dependent variables. Further, descriptive statistics were used to describe the level of performance in mathematics and programming. Findings: The results show that students demonstrated a high performance in their mathematics in the modern world course with a mean rating of 2.16 (SD=0.27), and a low performance in their mathematics enhancement 1 with a mean grade of 2.81 (SD=0.38). Similar result in their programming course with a mean grade of 2.64 (SD=0.39). The mathematics performance of the students is significantly correlated to their performance in programming. The low performance in mathematics enhancement 1 corresponds to the low performance in programming. Moreover, female students performed better in their programming course compared to males. Applications: The results could help the teachers improve the quality of instructions particularly in mathematics and programming that will improve the performance of the students in both subjects. Concerned University administrators should conduct frequent assessments and curriculum revisits to examine possible areas of improvement beneficial to the students.

Keywords: Mathematics performance; programming performance; data mining; correlation; point biserial; J48 algorithm


  1. McCoy LP, Burton JK. The Relationship of Computer Programming and Mathematics in Secondary Students. Computers in the Schools. 1988;4:159–166. Available from: https://dx.doi.org/10.1300/j025v04n03_17
  2. Razak MR, Ismail NZ. Influence of mathematics in programming subject. In: AIP Conference Proceedings. AIP Publishing LLC. 1974:50011.
  3. Bellman R, Esogbue AO, Nabeshima I. Mathematical Aspects of Scheduling and Applications. In: Rodin EY., ed. Modern Applied Mathematics and Computer Science. Elsevier. 2014.
  4. Balmes IL. Correlation of mathematical ability and programming ability of the computer science students. Asia Pacific Journal of Education, Arts and Sciences. 2017;4(3):85–88.
  5. Brookshire RG, Crews TB, III HFB. Student Success in a University Introductory Networks and Telecommunications Course. International Journal of Information and Communication Technology Education. 2009;5(1):53–61. Available from: https://dx.doi.org/10.4018/jicte.2009010104
  6. Duran IL. The role of mathematics background in the performance of BSCS students in computer programming subject. International Journal of Multidisciplinary Research and Modern Education (IJMRME). 2016;2(1):147–50. Available from: http://rdmodernresearch.org/wp-content/uploads/2016/02/152.pdf
  7. White G, Sivitanides M. An Empirical Investigation of the Relationship between success in Mathematics and Visual Programming Courses. Journal of Information System Education. 2003;14(4):409–416.
  8. Ali PJ, Ali S, Farag WE. An Instrument to Measure Math Attitudes of Computer Science Students. International Journal of Information and Education Technology. 2014;4(5):459–462. Available from: https://dx.doi.org/10.7763/ijiet.2014.v4.450
  9. Qian Y, Lehman JD. Correlates of Success in Introductory Programming: A Study with Middle School Students. Journal of Education and Learning. 2016;5(2):73. Available from: https://dx.doi.org/10.5539/jel.v5n2p73
  10. Treceñe J, Keneth, Abides R. A Study on the Variations of Internet Usage among Male and Female BS Information Technology Students. International Journal of Advanced Engineering and Management. 2020;5(1):12–17. Available from: https://ijoaemorg.files.wordpress.com/2020/03/ijoaem-5-1-2-1.pdf
  11. Guzdial M, Ericson B, Mcklin T, Engelman S. Georgia Computes! An Intervention in a US State, with Formal and Informal Education in a Policy Context. ACM Transactions on Computing Education. 2014;14(2):1–29. Available from: https://dx.doi.org/10.1145/2602488
  12. Alvarado C, Dodds Z, Libeskind-Hadas R. Increasing women's participation in computing at Harvey Mudd College. ACM Inroads. 2012;3:55–64. Available from: https://dx.doi.org/10.1145/2381083.2381100
  13. Dambrot FH, Watkins-Malek MA, Silling SM, Marshall RS, Garver JA. Correlates of sex differences in attitudes toward and involvement with computers. Journal of Vocational Behavior. 1985;27:71–86. Available from: https://dx.doi.org/10.1016/0001-8791(85)90053-3
  14. Makrakis V, Sawada T. Gender, computers and other school subjects among Japanese and Swedish students. Computers & Education. 1996;26(4):225–231. Available from: https://dx.doi.org/10.1016/0360-1315(95)00085-2
  15. Rubio MA, Romero-Zaliz R, Mañoso C, Madrid APd. Closing the gender gap in an introductory programming course. Computers & Education. 2015;82:409–420. Available from: https://dx.doi.org/10.1016/j.compedu.2014.12.003
  16. Byrne P, Lyons G. The effect of student attributes on success in programming. ACM SIGCSE Bulletin. 2001;33(3):49–52. Available from: https://dx.doi.org/10.1145/507758.377467
  17. Holden E, Weeden E. What Makes Valuable Pre-experience for Students Entering Programming Courses? Issues in Informing Science and Information Technology. 2006;3:279–293. Available from: https://dx.doi.org/10.28945/891
  18. Ramalingam V, LaBelle D, Wiedenbeck S. Self-efficacy and mental models in learning to program. ACM SIGCSE Bulletin. 2004;36(3):171. Available from: https://dx.doi.org/10.1145/1026487.1008042
  19. Türker PM, Pala FK. The Effect of Algorithm Education on Students’ Computer Programming Self-Efficacy Perceptions and Computational Thinking Skills. International Journal of Computer Science Education in Schools. 2020;3(3):19–32. Available from: https://dx.doi.org/10.21585/ijcses.v3i3.69
  20. Haliburton W, Thweatt M, Wahl NJ. Gender differences in personality components of computer science students. ACM SIGCSE Bulletin. 1998;30(1):77–81. Available from: https://dx.doi.org/10.1145/274790.273166
  21. Calitz AP, Watson MB, De V De Kock G. Identification and selection of successful future IT personnel in a changing technological and business environment. Proceedings of the. 1997;p. 31–35.
  22. De Los Santos JRN, Cornillez EEC, Carillo V, Santos D, GN. Mobile Games and Academic Performance of University Students. International Journal of Innovative Technology and Exploring Engineering (IJITEE). 2020;9.
  23. Caluza LJ, Trecene JK. Predicting Academic Performance of Information Technology Students using C4. 5 Classification Algorithm: A Model Development. International Journal of Information Sciences and Application. 2018;10(1):7–21.
  24. Borkar S, Rajeswari K. Predicting students academic performance using education data mining. International Journal of Computer Science and Mobile Computing. 2013;2(7):273–282.
  25. Bhardwaj BK, Pal S. Data Mining: A prediction for performance improvement using classification. International Journal of Computer Science and Information Security. 2012;9(4). Available from: https://arxiv.org/ftp/arxiv/papers/1201/1201.3418.pdf
  26. Elgamal AF. An educational data mining model for predicting student performance in programming course. International Journal of Computer Applications. 2013;70(17):22–30.
  27. Chan AYK, Chow KO, Cheung KS. Online Course Refinement through Association Rule Mining. Journal of Educational Technology Systems. 2007;36(4):433–477.
  28. Norwawi NM, Hibadullah CF, Osman J. Factors Affecting Performance in Introductory Programming. Proceedings of the International Conference on Qualitative Sciences and Its Applications (ICOQSIA). 2005.
  29. Cox KA. GJB, KAC, LMC., eds. The Scholar-Practitioner’s Guide to Research Design. Baltimore, MD. Laureate Publishing. 2016.
  30. Christensen LB, Johnson BR, Turner LA. Research Methods, Design, and Analysis (11). Pearson. 2011.
  31. Perinetti G. StaTips part VI: Bivariate correlation. South European journal of orthodontics and dentofacial research. 2019;6(1):2–5. Available from: https://doi.org/10.5937/SEJODR6-21664
  32. Rae AWM. Descriptive and Inferential Statistics. In: Colman MA., ed. Companion Encyclopedia of Psychology. (Vol. 2) 2019.
  33. Korkmaz Ö, Çakir R, Özden MY. A validity and reliability study of the computational thinking scales (CTS) Computers in Human Behavior. 2017;72:558–569. Available from: https://dx.doi.org/10.1016/j.chb.2017.01.005
  34. Palmér H. Programming in Preschool. Focus on Learning Mathematics. International Research in Early Childhood Education. 2017;8(1):75–87.
  35. Ayub M, Karnalim O, Risal R, Senjaya WF, Wijanto MC. Utilising pair programming to enhance the performance of slow-paced students on introductory programming. Journal of Technology and Science Education. 2019;9(3):357. Available from: https://dx.doi.org/10.3926/jotse.638
  36. Eid C, Millham R. Should Mathematics Be A Mandatory Fundamental Component Of Any IT Discipline? American Journal of Business Education (AJBE). 2012;6(1):67. Available from: https://dx.doi.org/10.19030/ajbe.v6i1.7484
  37. Kilman TA. The Relationship Between Students’ Applied Mathematics Skills and Students’ Attitudes Towards Mathematics. The University of Southern Mississippi The Aquila Digital Community thesis
  38. Sáez-López JM, Sevillano-García ML, Vazquez-Cano E. The effect of programming on primary school students’ mathematical and scientific understanding: educational use of mBot. Educational Technology Research and Development. 2019;67:1405–1425. Available from: https://dx.doi.org/10.1007/s11423-019-09648-5
  39. McCoy LP, Dodl NR. Computer Programming Experience and Mathematical Problem Solving. Journal of Research on Computing in Education. 1989;22(1):14–25. Available from: https://dx.doi.org/10.1080/08886504.1989.10781898
  40. Gunbatar MS, Karalar H. Gender Differences in Middle School Students' Attitudes and Self-Efficacy Perceptions towards mBlock Programming. European Journal of Educational Research. 2018;7(4):925–958.
  41. Kaleva S, Pursiainen J, Hakola M, Rusanen J, Muukkonen H. Students’ reasons for STEM choices and the relationship of mathematics choice to university admission. International Journal of STEM Education. 2019;6(1):43. Available from: https://dx.doi.org/10.1186/s40594-019-0196-x
  42. Jr EEC. Instructional quality and academic satisfaction of university students. European Journal of Education Studies. 2019;6(4):13–30.
  43. Benton L, Saunders P, Kalas I, Hoyles C, Noss R. Designing for learning mathematics through programming: A case study of pupils engaging with place value. International Journal of Child-Computer Interaction. 2018;16:68–76. Available from: https://dx.doi.org/10.1016/j.ijcci.2017.12.004
  44. Johansen BCL, Trecene JK, JK. Predicting Academic Performance of Information Technology Students using C4.5 Classification Algorithm: A Model Development . International Journal of Information Sciences and Application. 2018;10(1):7–21. Available from: http://www.irphouse.com/ijisa18/ijisav10n1_02.pdf
  45. Paler R. Effectiveness of Assimilating Technology in Drafting. International Journal of Scientific & Technology Research. 2019;8(12):1117–1119.
  46. Kotsiantis S. Educational data mining: a case study for predicting dropout-prone students. International Journal of Knowledge Engineering and Soft Data Paradigms. 2009;1(2):101. Available from: https://dx.doi.org/10.1504/ijkesdp.2009.022718
  47. Daniel B, Roux DAL, Parry. A New Generation of Students: Digital Media in Academic Contexts. SACLA . 2017;730:19–36.


© 2020 Cornillez Jr., Treceñe, de los Santos. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.