• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2021, Volume: 14, Issue: 16, Pages: 1274-1282

Original Article

Modeling Temperature and Precipitation in Hyderabad and Medak Using Copula

Received Date:10 March 2021, Accepted Date:22 April 2021, Published Date:07 May 2021


Objective: To analyze the Temperature and Precipitation dependence in Hyderabad and Medak and forecast Temperature. Hyderabad and Medak are districts of Telangana State, which is a Plateau region and Hyderabad is chosen as it is a thickly populated area whereas Medak is the nearest district to Hyderabad, which has relatively less population. Methods and Statistical analysis: The data is collected from the Indian Meteorological Department,Pune from 1901 to 2019. Data from 1901 to 1996 used for training and 1997 to 2019 data used for testing. Modeling is done keeping in view the deep association between Temperature and Precipitation, through Copula analysis. The Mean Absolute Percentage Error (MAPE) for the best model in Hyderabad and Medak are found to be 0.04 and 0.09 respectively. R- Software and IBM SPSS statistics version 25 were used to analyze the data and interpret the results. Findings: The best Copula need not be necessarily the same for different data sets. We could find the best Copula for Hyderabad as Rotated Gumbel 270 Copula and for Medak, Frank Copula based on AIC and BIC criteria. The simulated data of Temperature showed a very close agreement with testing data, which can be seen in [Figure 5 (a) & (b)]. Novelty: This type of analysis and model fitting is not found in the literature for Hyderabad and Medak and these districts are in Telangana, the Plateau region. Our fitted models can give a good prediction of Temperature in this region.

Keywords: Temperature; Precipitation; Normal distribution; Rotated Gumbel 270 Copula and Frank Copula


  1. Choubin B, Zehtabian G, Azareh A, Rafiei-Sardooi E, Sajedi-Hosseini F, Kişi Ö. Precipitation forecasting using classification and regression trees (CART) model: a comparative study of different approaches. Environmental Earth Sciences. 2018;77:1–3. Available from: https://dx.doi.org/10.1007/s12665-018-7498-z
  2. Choubin B, Malekian A, Samadi S, Khalighi-Sigaroodi S, Sajedi-Hosseini F. An ensemble forecast of semi-arid rainfall using large-scale climate predictors. Meteorological Applications. 2017;24:376–386. Available from: https://dx.doi.org/10.1002/met.1635
  3. Pandey PK, Das L, Jhajharia D, Pandey V. Modelling of interdependence between rainfall and temperature using copula. Modeling Earth Systems and Environment. 2018;4:867–879. Available from: https://dx.doi.org/10.1007/s40808-018-0454-9
  4. Lazoglou G, Anagnostopoulou C. Joint distribution of temperature and precipitation in the Mediterranean, using the Copula method. Theoretical and Applied Climatology. 2019;135:1399–1411. Available from: https://dx.doi.org/10.1007/s00704-018-2447-z
  5. Bezak N, Zabret K, Šraj M. Application of Copula Functions for Rainfall Interception Modelling. Water. 2018;10(8):995. Available from: https://dx.doi.org/10.3390/w10080995
  6. Yu R, Yang R, Zhang C, Špoljar M, Kuczyńska-Kippen N, Sang G. A Vine Copula-Based Modeling for Identification of Multivariate Water Pollution Risk in an Interconnected River System Network. Water. 2020;12:2741. Available from: https://dx.doi.org/10.3390/w12102741
  7. Shaukat MH, Hussain I, Faisal M, Al-Dousari A, Ismail M, Shoukry AM, et al. Monthly drought prediction based on ensemble models. PeerJ. 2020;8:e9853. Available from: https://dx.doi.org/10.7717/peerj.9853
  8. Dzupire NC, Ngare P, Odongo L. A copula based bi-variate model for temperature and rainfall processes. Scientific African. 2020;8:e00365. Available from: https://dx.doi.org/10.1016/j.sciaf.2020.e00365
  9. Mesbahzadeh T, Miglietta MM, Mirakbari M, Sardoo FS, Abdolhoseini M. Joint modeling of Precipitation and Temperature using Copula theory for current and future prediction under climate change scenarios in arid lands . Advances in Meteorology. 2019;p. 1–15. Available from: https://doi.org/10.1155/2019/6848049
  10. Patel AM, Kousar H, District S. Consecutive Days Maximum Precipitation Analysis by Gumbel’s Extreme Value Distributions for Southern Telangana. Indian Journal Of Natural Sciences. 2011;11(7):408–412. Available from: http://tnsroindia.org.in/JOURNAL/FULL%20TEXT%20ISSUE%207.pdf
  11. Sklar A. Random variables, joint distribution functions, and copulas. Kybernetika. 1973;9(6):449–460. Available from: http://dml.cz/dmlcz/125838
  12. Nelsen RB. An introduction to copulas. Springer Science & Business Media. 2007.
  13. Aldrian E, Susanto RD. Identification of three dominant rainfall regions within Indonesia and their relationship to sea surface temperature. International Journal of Climatology. 2003;23(12):1435–1452. Available from: https://dx.doi.org/10.1002/joc.950
  14. Black E. The relationship between Indian Ocean sea-surface temperature and East African rainfall. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 1826;363:43–50. Available from: https://doi.org/10.1098/rsta.2004.1474


© 2021 Rajini & Jayalakshmi.This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.