• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2023, Volume: 16, Issue: 28, Pages: 2153-2159

Original Article

Molecular Dynamics Simulations to Study the Role of Temperature on Carbon Nanotube and Protein Interactions

Received Date:11 April 2023, Accepted Date:26 June 2023, Published Date:26 July 2023


Background/Objectives: Almost all chemical reactions within our bodies are catalysed by proteins. The calcium signalling inside the eukaryotic cell structure is significantly influenced by the calcium modulated protein (3CLN). On the other hand, carbon nanotubes are an excellent choice for the aim of targeted drug delivery. Therefore, it is crucial to research how these two elements interact. Methods: In this work, we perform extensive molecular dynamics (MD) simulations of 100 ns each to study the interaction of 3CLN protein with a carbon nanotube (CNT) at 320 K, 420 K, 520 K, 590 K, and 660 K temperature ranges. The conformational changes in the calmodulin protein are studied with MD simulations at different temperature ranges using open-source software, VMD and NAMD. Findings: A significant dependence of the temperature is observed on the overall conformation change of the protein around the carbon nanotube. The quantitative comparison of the simulation data with complete studies shows the different aspects of the folding process. It can also give detailed structural results for the experimental observations as well as physical results for theoretical concepts without actual experimentation. Novelty: The protein is seen to form a stable corona structure around the CNT at a temperature of 520 K, as previously reported by the other researchers. While this stability is lost at higher temperatures. This interaction study can be used to investigate the impact of environmental factors on the dynamics of a particular protein in conjunction with a nanomaterial. It will open up new avenues for future research.

Keywords: Carbon Nanotube; Calmodulin Protein; Eukaryotic Cell; NanoMolecular Dynamics (NAMD); Simulation; Visual Molecular Dynamics (VMD)


  1. Abbaspour M, Jorabchi HMN, Akbarzadeh, Ahmadi N. Molecular dynamics simulation of carbon peapod-like nanomaterials in desalination process. Desalination. 2021. Available from: https://doi.org/10.1016/j.desal.2021.114975
  2. Liu R, Zhao Y, Sui C, Sang Y, Hao W, Li J, et al. Molecular dynamics simulations of Carbyne/Carbon nanotube gigahertz oscillators. Computational Materials Science. 2023;222:112105. Available from: https://doi.org/10.1016/j.commatsci.2023.112105
  3. Mehta D, Negi S, Ganesh R. Molecular dynamics simulations to study the interaction between carbon nanotube and calmodulin protein. Materials Today: Proceedings. 2020;28:108–111. Available from: https://doi.org/10.1016/j.matpr.2020.01.354
  4. Dastjerdi S, Akgöz B. On the statics of fullerene structures. International Journal of Engineering Science. 2019;142:125–144. Available from: https://doi.org/10.1016/j.ijengsci.2019.06.002
  5. Dhinakaran V, Lavanya M, Vigneswari K, Ravichandran M, Vijayakumar MD. Review on exploration of graphene in diverse applications and its future horizon. Materials Today: Proceedings. 2020;27:824–828. Available from: https://doi.org/10.1016/j.matpr.2019.12.369
  6. Aryal B, Adhikari B, Aryal N, Bhattarai BR, Khadayat K, Parajuli N. LC-HRMS Profiling and Antidiabetic, Antioxidant, and Antibacterial Activities of Acacia catechu (L.f.) Willd. BioMed Research International. 2021;2021:1–16. Available from: https://doi.org/10.1155/2021/7588711
  7. Chen J, Wang L, Gui X, Lin Z, Ke X, Hao F, et al. Strong anisotropy in thermoelectric properties of CNT/PANI composites. Carbon. 2017;114:1–7. Available from: https://doi.org/10.1016/j.carbon.2016.11.074
  8. Wolfe RR. Regulation of Muscle Protein by Amino Acids. The Journal of Nutrition. 2002;132(10). Available from: https://doi.org/10.1093/jn/131.10.3219S
  9. I J, Matsuo Y, Maruyama S. Single-Walled Carbon Nanotubes in Solar Cells. Topics in Current Chemistry Collections. 2019;271:271–298. Available from: https://doi.org/10.1007/978-3-030-12700-8_10
  10. Marchesan S, Prato M. Under the lens: carbon nanotube and protein interaction at the nanoscale. Chemical Communications. 2015;51(21):4347–4359. Available from: https://doi.org/10.1039/C4CC09173F
  11. Calvaresi M, Zerbetto F. The Devil and Holy Water: Protein and Carbon Nanotube Hybrids. Accounts of Chemical Research. 2013;46(11):2454–2463. Available from: https://doi.org/10.1021/ar300347d
  12. Ouassil N, Pinals RL, JTDBO, Wang J, Landry MP. Supervised learning model predicts protein adsorption to carbon nanotubes. Science Advances . 2022. Available from: https://doi.org/10.1126/sciadv.abm0898
  13. Martins CHZ, Côa F, Silva GHD, Bettini e, Farias MAD, Villares R, et al. Functionalization of carbon nanotubes with bovine plasma biowaste by forming a corona enhances copper removal from water and ecotoxicity mitigation. Environmental Science:Nano. 2022;9:2887–2905. Available from: https://doi.org/10.1039/D2EN00145D
  14. Pedram, Toghraie D, Karimipour A, Hajian M. Molecular dynamics simulation of fluid flow passing through a nanochannel: Effects of geometric shape of roughnesses. Journal of Molecular Liquids. 2019;275:192–203. Available from: https://doi.org/10.1016/j.molliq.2018.11.057
  15. Nemati M, Abady ARSN, Toghraie D, Karimipour A. Numerical investigation of the pseudopotential lattice Boltzmann modeling of liquid-vapor for multi-phase flows. Physica A: Statistical Mechanics and its Applications. 2018;489:65–77. Available from: https://doi.org/10.1016/j.physa.2017.07.013
  16. Yan SR, Shirani N, Zarringhalam M, Toghraie D, Nguyen Q, Karimipour A. Prediction of boiling flow characteristics in rough and smooth microchannels using molecular dynamics simulation: Investigation the effects of boundary wall temperatures. Journal of Molecular Liquids. 2020;306:112937. Available from: https://doi.org/10.1016/j.molliq.2020.112937
  17. Jolfaei NA, Jolfaei NA, Hekmatifar M, Piranfar A, Toghraie D, Sabetvand R, et al. Investigation of thermal properties of DNA structure with precise atomic arrangement via equilibrium and non-equilibrium molecular dynamics approaches. Computer Methods and Programs in Biomedicine. 2020;185:105169. Available from: https://doi.org/10.1016/j.cmpb.2019.105169
  18. Humphrey W, Dalke A, Schulten K. VMD: Visual molecular dynamics. Journal of Molecular Graphics. 1996;14(1):33–38. Available from: https://doi.org/10.1016/0263-7855(96)00018-5
  19. Phillips JC, Hardy DJ, Maia JDC, Stone JE, Ribeiro JV, Bernardi RC, et al. Scalable molecular dynamics on CPU and GPU architectures with NAMD. The Journal of Chemical Physics. 2020;153(4):044130. Available from: https://doi.org/10.1063/5.0014475
  20. Kumar S, Mehta D, Negi S. Role of temperature variation on the dynamics of carbon nanotube and protein interactions. AIP Conference Proceedings . 2023;2752. Available from: https://doi.org/10.1063/5.0136085


© 2023 Kumar et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.