• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2023, Volume: 16, Issue: 9, Pages: 614-621

Original Article

New Education Policy 2020: A Sentiment Classification

Received Date:31 May 2022, Accepted Date:05 February 2023, Published Date:02 March 2023


Objectives: To develop a model of multi-class classification which provides better performance for the large dataset. To reduce complexity of the model and to analyse the sentiments of twitter data in an efficient way. Methods: The sentiment analysis has been performed on the New Education Policy 2020. Totally, 105045 tweets were collected from the Twitter database using Tweepy library in python. The sentiment analysis was done on English tweets. The preprocessing and feature extraction was done by using pyspark packages. The hybrid of unigram and bigrams feature sets was used. To extract the labelled dataset, AFINN dictionary was used. The classifiers such as Random Forest in Machine Learning and Convolutional Neural Network, Bidirectional Long Short- Term Memory in Deep Learning were used to determine positive, negative and neutral sentiments of tweets. Findings: The Accuracy (97%), Precision (97%), Recall (97%), F-Measure (97%) and 99% of ROC-AUC with the minimum Log Loss 0.10 was obtained by the hybrid of Convolutional Neural Network and Bidirectional Long Short-Term Memory. Novelty : The complexity of the model was reduced by using Convolutional Neural Network which selects the relevant features. The performance of the model was evaluated by using the various metrics such as accuracy, precision, recall, f-score, log loss and roc-auc whereas in the existing works only limited metrics were used. The efficiency of the proposed model can be proved in any case.

Keywords: Random Forest Classifier (RF); Convolutional Neural Network (CNN); Bidirectional Long Short-Term Memory (BLSTM); Support Vector Machine (SVM); Term Frequency – Inverse Document Frequency (TF-IDF)


  1. Alqaryouti O, Siyam N, Monem AA, Shaalan K. Aspect-based sentiment analysis using smart government review data. Applied Computing and Informatics. 2019. Available from: https://doi.org/10.1016/j.aci.2019.11.003
  2. Munshi A, Sanchitsapra M, Arvindhan. A Novel Random Forest Implementation of Sentiment Analysis”. International Research Journal of Engineering and Technology (IRJET). 2020;(7) 2821–2824. Available from: https://www.irjet.net/archives/V7/i6/IRJET-V7I6532.pdf
  3. Mehmet U, Salur I, Aydin. A Novel Hybrid Deep Learning Model for Sentiment Classification. IEEE Access. 2020;8:58080–58093. Available from: https://ieeexplore.ieee.org/document/9044300
  4. Tholusuri A, Anumala M, Malapolu B, Lakshmi GJ. Sentiment Analysis using LSTM”. International Journal of Engineering and Advanced Technology (IJEAT). 2019;(8) 1338–1340. Available from: https://www.ijeat.org/wp-content/uploads/papers/v8i6S3/F12350986S319.pdf
  5. Kastrati Z, Ahmedi L, Kurti A, Kadriu F, Murtezaj D, Gashi F. A Deep Learning Sentiment Analyser for Social Media Comments in Low-Resource Languages. Electronics. 2021;10(10):1133. Available from: https://www.mdpi.com/2079-9292/10/10/1133
  6. Reddy NVDM, Reddy S. Effects Of Padding On LSTMS And CNNS. 2019. Available from: https://arxiv.org/abs/1903.07288
  7. Xu G, Meng Y, Qiu X, Yu Z, Wu X. Sentiment Analysis of Comment Texts Based on BiLSTM. IEEE Access. 2019;7:51522–51532. Available from: https://doi.org/10.1109/ACCESS.2019.2909919
  8. Kwaik KA, Saad M, SC, Dobnik S. LSTM- CNN Deep Learning Model for Sentiment Analysis of Dialectal Arabic. International Conference on Arabic Language Processing: Arabic Language Processing: From Theory to Practice. 2019;p. 108–121. Available from: https://www.researchgate.net/publication/336267517_LSTM_CNN_Deep_Learning_Model_for_Sentiment_Analysis_of_Dialectal_Arabic
  9. Minaee S, Azimi E, A. Deep-Sentiment. Sentiment Analysis Using Ensemble of CNN and Bi-LSTM Models. 2019. Available from: https://arxiv.org/abs/1904.04206
  10. Rhanoui M, Mikram M, Yousfi S, Barzali S. A CNN-BiLSTM Model for Document-Level Sentiment Analysis. Machine Learning and Knowledge Extraction. 2019;1(3):832–847. Available from: https://doi.org/10.3390/make1030048
  11. Guha T, Mohan KG. A Hybrid Deep Learning Model for Long-Term Sentiment Classification. Webology. 2020;17(2):663–676. Available from: https://www.webology.org/abstract.php?id=338
  12. Raut P, Rathod R, Tidke R, Pande R, Rathod N, Kulkarni N. Sentiment Analysis of Twitter. International Journal for Research in Applied Science and Engineering Technology. 2022;10(12):621–627. Available from: https://doi.org/10.22214/ijraset.2022.47954
  13. Alam KN, Khan MS, Dhruba AR, Khan MM, Al-Amri JF, Masud M, et al. Deep Learning-Based Sentiment Analysis of COVID-19 Vaccination Responses from Twitter Data. Computational and Mathematical Methods in Medicine. 2021;2021:1–15. Available from: https://doi.org/10.1155/2021/4321131
  14. Ashique M, Kumar S, A, Panwar S. Sentiment Analysis Using machines Learning Approaches of Twitter Data and Semantic Analysis”. Turkish Journal of Computer and Mathematics Education. 2021;12(6):5181–5192. Available from: https://turcomat.org/index.php/turkbilmat/article/view/8771
  15. Gandhi UD, Kumar PM, Babu GC, Karthick G. Sentiment Analysis on Twitter Data by Using Convolutional Neural Network (CNN) and Long Short Term Memory (LSTM) Wireless Personal Communications. 2021. Available from: https://doi.org/10.1007/s11277-021-08580-3


© 2023 Sujatha & Radha. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.