• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2023, Volume: 16, Issue: 44, Pages: 4081-4089

Original Article

Numerical Analysis of the Influence of an Inclined Magnetic Field on the Flow of Casson Nanofluid Across an Exponentially Stretching Surfae, using the Darcy-Forchheimer model

Received Date:01 October 2023, Accepted Date:11 October 2023, Published Date:28 November 2023


Objective: The present study analyses the heat transfer properties of a Casson fluid moving under the influence of an inclined magnetic field through an exponentially stretched surface in a porous medium using the Darcy-Forchheimer law. Non-Newtonian fluid behavior is described by using the Casson fluid model. Thermophoresis as well as Brownian motion effects on heat transmission and concentration of nanoparticle are considered. Method: With similarity transformations; nonlinear (PDE) partial differential equation has been changed to (ODEs) ordinary differential equations. By using bvp4c programme in the Matlab software, the nonlinear PDE are numerically solved. Findings: The impacts of dimensionless factors on the flow, concentration of nanoparticle and heat transfer were studied. Graphs were plotted and analyzed in order to explore how different dimensionless factors affected velocity, temperature concentration profiles. Novelty: The combination of magnetic fields, nanofluids, and the Darcy-Forchheimer model is an interdisciplinary approach. Future researchers in fields like fluid dynamics, magneto hydrodynamics, materials science, and applied mathematics could benefit from this research work. It bridges multiple disciplines and contributes to the ongoing efforts to make energy-related processes more efficient and sustainable. The findings demonstrate that the porous medium is accountable for both inflation in the thermal boundary layer thickness and a decrease in the thickness of the momentum boundary layer. For increasing the permeability of the medium, conductive heat transfer predominates. The improvement of heat and mass transport is made possible by all these elements.

Keywords: Casson fluid, Heat transmission, Nonlinear PDE., Darcy-Forchheimer law, Porous medium


  1. Chandel S, Sood S. Unsteady flow of Williamson fluid under the impact of prescribed surface temperature (PST) and prescribed heat flux (PHF) heating conditions over a stretching surface in a porous enclosure. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik. 2022;102(3). Available from: https://doi.org/10.1002/zamm.202100128
  2. Irfan M, Khan M, Khan WA. Heat sink/source and chemical reaction in stagnation point flow of Maxwell nanofluid. Applied Physics A. 2020;126(11):1–8. Available from: https://doi.org/10.1007/s00339-020-04051-x
  3. Rafiq K, Irfan M, Khan M, Anwar MS, Khan WA. Arrhenius activation energy theory in radiative flow of Maxwell nanofluid. Physica Scripta. 2021;96(4):045002. Available from: https://doi.org/10.1088/1402-4896/abd903
  4. Kumar YS, Hussain S, Raghunath K, Ali F, Guedri K, Eldin SM, et al. Numerical analysis of magneto hydrodynamics casson nanofluid flow with activation energy, Hall current and thermal radiation. Scientific Reports. 2023;13(1):4021. Available from: https://doi.org/10.1038/s41598-023-28379-5
  5. Waini I, Ishak A, Pop I. On the stability of the flow and heat transfer over a moving thin needle with prescribed surface heat flux. Chinese Journal of Physics. 2019;60:651–658. Available from: https://doi.org/10.1016/j.cjph.2019.06.008
  6. Sharma D, Sood S. Effect of inclined magnetic field on flow of Williamson nanofluid over an exponentially stretching surface in Darcy‐Forchheimer model. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik. 2022;102(6):202100425. Available from: https://doi.org/10.1002/zamm.202100425
  7. Mustafa M, Hayat T, Pop I, Aziz A. Unsteady boundary layer flow of a Casson fluid due to an impulsively started moving flat plate. Heat Transfer—Asian Research. 2011;40(6):563–576. Available from: http://dx.doi.org/10.1002/htj.20358
  8. Eldabe NT, Saddeck G, El-Sayed AF. Heat transfer of MHD non-Newtonian Casson fluid flow between two rotating cylinders. Mechanics and Mechanical Engineering. 2001;5(2):237–251.
  9. Kuznetsov AV, Nield DA. Natural convective boundary-layer flow of a nanofluid past a vertical plate. International Journal of Thermal Sciences. 2010;49(2):243–247. Available from: https://www.infona.pl/resource/bwmeta1.element.baztech-article-LOD7-0033-0089
  10. Shampine LF, Kierzenka J, Reichelt MW. Boundary Value Problems for Ordinary Differential Equations. SIAM Journal on Numerical Analysis. 1968;5(2):219–242. Available from: https://classes.engineering.wustl.edu/che512/bvp_paper.pdf
  11. Magyari E, Keller B. Heat and mass transfer in the boundary layers on an exponentially stretching continuous surface. Journal of Physics D: Applied Physics. 1999;32(5):577–585. Available from: https://doi.org/10.1088/0022-3727/32/5/012
  12. Sharma S. MHD Boundary Layer Flow Past an Exponentially Stretching Sheet with Darcy-Forchheimer Flow of Nanofluids. Indian Journal Of Science And Technology. 2022;15(33):1594–1604. Available from: https://doi.org/ 10.17485/IJST/v15i33.607


© 2023 Devi & Sood. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.