• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2024, Volume: 17, Issue: 8, Pages: 679-690

Original Article

Numerical Investigation of Three-Dimensional Magnetohydrodynamic Flow of Ag 􀀀 H2O Nanofluid Over an Oscillating Surface in a Rotating Porous Medium

Received Date:15 November 2023, Accepted Date:23 January 2024, Published Date:14 February 2024


Objective: To investigate the three-dimensional flow of a nanofluid (Ag-water) over a stretchable vertical oscillatory sheet. This study involves considering fluctuating temperatures on the sheet and comparing them to the free stream temperature. The formulation of the unsteady boundary layer equations leading to the flow of nanofluid also takes into consideration the occurrence of the heterogeneous-homogeneous chemical reaction and thermal radiation. Method: The governing equations and the boundary conditions have been derived in a dimensionless form by using the appropriate transformations, and they are then solved using an EFDS (Explicit Finite Difference Scheme) in Matlab software. The Von-Neumann stability analysis is used to determine the method’s stability requirements for constant sizes of the grid. Findings: The physical factors impact on the concentration fields, temperature distribution, and velocity distribution were obtained and are studied by graphs and described in extensive detail. Convergence and stability requirements are attained in order to achieve accurate solutions. Novelty: In this study fluctuations in the temperature and stretching velocity of sheet on three-dimensional magnetohydrodynamic flow of Ag − H2O nanofluid over an oscillating surface through rotating porous are taken into account. Impacts of porous media permeability, velocity slip, magnetic fields, nanoparticle volume fraction, heat radiation, rotation, and homogeneous and heterogeneous chemical reaction parameters had all been attempted to be determined.

Keywords: Oscillatory Surface, Heat transmission, Nonlinear PDE, Explicit Finite Difference Scheme, Nanoparticle


  1. Lund LA, Omar Z, Raza J, Khan I. Magnetohydrodynamic flow of Cu–Fe3O4/H2O hybrid nanofluid with effect of viscous dissipation: dual similarity solutions. Journal of Thermal Analysis and Calorimetry. 2021;143(2):915–927. Available from: https://doi.org/10.1007/s10973-020-09602-1
  2. Arulmozhi S, Sukkiramathi K, Santra SS, Edwan R, Fernandez-Gamiz U, Noeiaghdam S. Heat and mass transfer analysis of radiative and chemical reactive effects on MHD nanofluid over an infinite moving vertical plate. Results in Engineering. 2022;14:1–9. Available from: https://doi.org/10.1016/j.rineng.2022.100394
  3. Aslani KE, Mahabaleshwar US, Singh J, Sarris IE. Combined Effect of Radiation and Inclined MHD Flow of a Micropolar Fluid Over a Porous Stretching/Shrinking Sheet with Mass Transpiration. International Journal of Applied and Computational Mathematics. 2021;7(3):1–21. Available from: https://doi.org/10.1007/s40819-021-00987-7
  4. Hussain A, Alshbool MH, Abdussattar A, Rehman A, Ahmad H, Nofal TA, et al. A computational model for hybrid nanofluid flow on a rotating surface in the existence of convective condition. Case Studies in Thermal Engineering. 2021;26:1–12. Available from: https://doi.org/10.1016/j.csite.2021.101089
  5. Hussain A, Arshad M, Rehman A, Hassan A, Elagan SK, Ahmad H, et al. Three-Dimensional Water-Based Magneto-Hydrodynamic Rotating Nanofluid Flow over a Linear Extending Sheet and Heat Transport Analysis: A Numerical Approach. Energies. 2021;14(16):1–15. Available from: https://doi.org/10.3390/en14165133
  6. Nasirzadehroshenin F, Sadeghzadeh M, Khadang A, Maddah H, Ahmadi MH, Sakhaeinia H, et al. Modeling of heat transfer performance of carbon nanotube nanofluid in a tube with fixed wall temperature by using ANN–GA. The European Physical Journal Plus. 2020;135(2). Available from: https://doi.org/10.1140/epjp/s13360-020-00208-y
  7. Shoaib M, Raja MAZ, Sabir MT, Islam S, Shah Z, Kumam P, et al. Numerical investigation for rotating flow of MHD hybrid nanofluid with thermal radiation over a stretching sheet. Scientific Reports. 2020;10(1):1–15. Available from: https://doi.org/10.1038/s41598-020-75254-8
  8. Farooq AA, Kahshan M, Saleem S, Rahimi-Gorji M, Al-Mubaddel FS. Entropy production rate in ciliary induced flows through cylindrical tubules under the consequences of Hall effect. Journal of the Taiwan Institute of Chemical Engineers. 2021;120:207–217. Available from: https://doi.org/10.1016/j.jtice.2021.03.024
  9. Kumar R, Kumar R, Koundal R, Shehzad SA, Sheikholeslami M. Cubic Auto-Catalysis Reactions in Three-Dimensional Nanofluid Flow Considering Viscous and Joule Dissipations Under Thermal Jump. Communications in Theoretical Physics. 2019;71(7). Available from: https://iopscience.iop.org/article/10.1088/0253-6102/71/7/779/meta
  10. Hussain M, Ashraf M, Nadeem S, Khan M. Radiation effects on the thermal boundary layer flow of a micropolar fluid towards a permeable stretching sheet. Journal of the Franklin Institute. 2013;350(1):194–210. Available from: https://doi.org/10.1016/j.jfranklin.2012.07.005
  11. Brinkman HC. The Viscosity of Concentrated Suspensions and Solutions. The Journal of Chemical Physics. 1952;20(4). Available from: https://doi.org/10.1063/1.1700493
  12. Khanafer K, Vafai K, Lightstone M. Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. International Journal of Heat and Mass Transfer. 2003;46(19):3639–3653. Available from: https://doi.org/10.1016/S0017-9310(03)00156-X


© 2024 Devi & Sood. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.