• P-ISSN 0974-6846 E-ISSN 0974-5645

# Indian Journal of Science and Technology

## Article

• VIEWS 396
• PDF 114

Indian Journal of Science and Technology

Year: 2024, Volume: 17, Issue: 11, Pages: 955-966

Original Article

## Numerical Solution of Subdiffusion Bioheat equation with Single Phase lag

Received Date:23 December 2023, Accepted Date:12 February 2024, Published Date:28 February 2024

## Abstract

Objectives: The aim of this study is to investigate thermal beheviour of living tissues, for this we use subdiffusion bioheat equation with single phase lag model. Methods: The Crank-Nicolson finite difference scheme is used for subdiffusion bioheat equation with single phase lag by using Caputo fractional derivative. A Python program is used to calculate a numerical solution, which is then visually depicted through graphical representation. Finding: We discuss significance of heat flux time relaxation parameter and fractional parameter. To explore our findings, we conducted comparative analysis of subdiffusion bioheat equation with single phase lag model with classical bioheat model and fractional bioheat model. Moreover, We discussed stability and convergence of developed scheme. Novelty: The bio heat equation can be effectively addressed using the Crank-Nicolson finite difference method of fractional-order. Developed Python program provides effective tool for getting numerical solution of fractional differential equation. Single phase lag model is useful for short time heating process.

Keywords: Fractional Differential Equation, Caputo fractional derivatives, Subdiffusion bioheat equation, Single Phase Lag, Python etc

## References

1. Siedlecka U, Ciesielski M. Analysis of solutions of the 1D fractional Cattaneo heat transfer equation. Journal of Applied Mathematics and Computational Mechanics. 2021;20(4):87–98. Available from: https://doi.org/10.17512/jamcm.2021.4.08
2. Zhou H, Li P, Fang Y. Single-phase-lag thermoelastic damping models for rectangular cross-sectional micro- and nano-ring resonators. International Journal of Mechanical Sciences. 2019;163:105132. Available from: https://doi.org/10.1016/j.ijmecsci.2019.105132
3. Nikan O, Avazzadeh Z, Machado JAT. Numerical approach for modeling fractional heat conduction in porous medium with the generalized Cattaneo model. Applied Mathematical Modelling. 2021;100:107–124. Available from: https://doi.org/10.1016/j.apm.2021.07.025
4. Goudarzi P, Azimi A. Numerical simulation of fractional non-Fourier heat conduction in skin tissue. Journal of Thermal Biology. 2019;84:274–284. Available from: https://doi.org/10.1016/j.jtherbio.2019.05.021
5. Patil HM, Maniyeri R. Finite difference method based analysis of bio-heat transfer in human breast cyst. Thermal Science and Engineering Progress. 2019;10:42–47. Available from: https://doi.org/10.1016/j.tsep.2019.01.009
6. Qiao Y, Wang X, Qi H, Xu H. Numerical simulation and parameters estimation of the time fractional dual-phase-lag heat conduction in femtosecond laser heating. International Communications in Heat and Mass Transfer. 2021;125:105355. Available from: https://doi.org/10.1016/j.icheatmasstransfer.2021.105355
7. Zhang Q, Sun Y, Yang J. Bio-heat response of skin tissue based on three-phase-lag model. Scientific Reports. 2020;10(1):6421. Available from: https://doi.org/10.1038/s41598-020-73590-3
8. Sonawane J, Sontakke B, Takale K. Approximate Solution of Sub diffusion Bio heat Transfer Equation. Baghdad Science Journal. 2023;20(1(SI)):394. Available from: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/8410
9. Kharde U, Takale K, Gaikwad S. Numerical solution of time fractional drug concentration equation in central nervous system. Journal of Mathematical and Computational Science. 2021;11(6):7317–7336. Available from: https://doi.org/10.28919/jmcs/6470

© 2024 Sonawane et al.  This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)

## DON'T MISS OUT!

Subscribe now for latest articles and news.