• P-ISSN 0974-6846 E-ISSN 0974-5645

# Indian Journal of Science and Technology

## Article

• VIEWS 125
• PDF 43

Indian Journal of Science and Technology

Year: 2024, Volume: 17, Issue: 12, Pages: 1237-1244

Original Article

## On the Solution of Blasius Boundary Layer Equations of Prandtl-Eyring Fluid Flow Past a Stretching Sheet

Received Date:12 August 2023, Accepted Date:09 February 2024, Published Date:20 March 2024

## Abstract

Objective: This paper investigates velocity profile for two-dimensional, incompressible, laminar forced convection flow of the fluid model for Prandtl-Eyring fluid past a stretching sheet in the presence of fluid parameters. Methods: The governing partial differential equation for the flow was transformed into non-linear ordinary differential equation by using the deductive one parameter group theoretic method and numerical solution of non-linear ordinary differential equation (ODE) is solved by MATLAB bvp4c solver. Findings: The solution of velocity profile obtained as a function of parameter and . The effect of the fluid parameter was discussed graphically. Novelty: The main goal of this article is to analyze boundary layer flow of Prandtl-Eyring fluid over a stretching surface. The conservation equations of mass, momentum are converted into non-linear ordinary differential equations along with boundary conditions using deductive one parameter group theoretic method and solved by MATLAB ODE solver. Comparisons with previously published works are made, and results show a high level of agreement. This type of research is applicable to extrusion, paper production, fiber glass production, hot rolling, condensation process, crystal growing, polymer sheets etc.

Keywords: Boundary layer, laminar flow, Deductive one parameter Group theoretic method, Absolute invariant, Stretching Sheet, Prandtl-Eyring fluid

## References

1. Shukla H, Patel J, Surati HC, Patel M, Timol MG. Similarity solution of forced convection flow of Powell-Eyring & Prandtl-Eyring fluids by group-Theoretic method. Mathematical Journal of Interdisciplinary Sciences. 2017;5(2):151–165. Available from: https://doi.org/10.15415/mjis.2017.52012
2. Umar M, Akhtar R, Sabir Z, Wahab HA, Zhiyu Z, Imran A, et al. Numerical Treatment for the Three-Dimensional Eyring-Powell Fluid Flow over a Stretching Sheet with Velocity Slip and Activation Energy. Advances in Mathematical Physics. 2019;2019:1–12. Available from: https://doi.org/10.1155/2019/9860471
3. Jafar AB, Shafie S, Ullah I, Safdar R, Jamshed W, Pasha AA, et al. Mixed convection flow of an electrically conducting viscoelastic fluid past a vertical nonlinearly stretching sheet. Scientific Reports. 2022;12(1):1–13. Available from: https://doi.org/10.1038/s41598-022-18761-0
4. Abbas W, Megahed AM, Ibrahim MA, Said AAM. Ohmic dissipation impact on flow of Casson-Williamson fluid over a slippery surface through a porous medium. Indian Journal of Physics. 2023;97:4277–4283. Available from: https://doi.org/10.1007/s12648-023-02754-4
5. Narsingani LS, Patel VV, Panchal J. Analyze the Flow Behavior for MHD Power-Law Fluids. Indian Journal Of Science And Technology. 2023;16(1):47–55. Available from: https://doi.org/10.17485/IJST/v16i1.1383
6. Ullah I, Alghamdi M, Xia WFF, Shah SI, Khan H. Activation energy effect on the magnetized-nanofluid flow in a rotating system considering the exponential heat source. International Communications in Heat and Mass Transfer. 2021;128. Available from: https://doi.org/10.1016/j.icheatmasstransfer.2021.105578
7. Li YMM, Ullah I, Alam MM, Khan H, Aziz A. Lorentz force and Darcy-Forchheimer effects on the convective flow of non-Newtonian fluid with chemical aspects. Waves in Random and Complex Media. 2022. Available from: https://doi.org/10.1080/17455030.2022.2063984
8. Ullah I, Shukat S, Albakri A, Khan H, Galal AM, Jamshed W. Thermal performance of aqueous alumina–titania hybrid nanomaterials dispersed in rotating channel. International Journal of Modern Physics B. 2023;37(24). Available from: https://doi.org/10.1142/S0217979223502375
9. Pathan A, Timol MG. Similarity solution of MHD boundary layer flow of Prandtl-Eyring fluids. International Journal of Engineering Research & Technology. 2015;3(23):1–5. Available from: https://www.ijert.org/similarity-solution-of-mhd-boundary-layer-flow-of-prandtl-eyring-fluids
10. Hayat T, Bibi S, Alsaadi F, Rafiq M. Peristaltic Transport of Prandtl-Eyring Liquid in a Convectively Heated Curved Channel. PLOS ONE. 2016;11(6):1–19. Available from: https://doi.org/10.1371/journal.pone.0156995
11. Hussain A, Malik MY, Awais M, Salahuddin T, Bilal S. Computational and physical aspects of MHD Prandtl-Eyring fluid flow analysis over a stretching sheet. Neural Computing and Applications. 2019;31(S1):425–433. Available from: https://doi.org/10.1007/s00521-017-3017-5
12. Rehman KU, Awais M, Hussain A, Kousar N, Malik MY. Mathematical analysis on MHD Prandtl-Eyring nanofluid new mass flux conditions. Mathematical Methods in the Applied Sciences. 2019;42(1):24–38. Available from: https://doi.org/10.1002/mma.5319
13. Qayyum S, Hayat T, Kanwal M, Alsaedi A, Khan MI. Transportation of entropy optimization in radiated chemically dissipative flow of Prandtl–Eyring nanofluid with activation energy. Computer Methods and Programs in Biomedicine. 2020;184:105130. Available from: https://doi.org/10.1016/j.cmpb.2019.105130
14. Hussain A, Malik MY, Khan M, Salahuddin T. Application of generalized Fourier heat conduction law on MHD viscoinelastic fluid flow over stretching surface. International Journal of Numerical Methods for Heat & Fluid Flow. 2020;30(6):3481–3496. Available from: https://doi.org/10.1108/HFF-02-2019-0161
15. Khan I, Hussain A, Malik MY, Mukhtar S. On magnetohydrodynamics Prandtl fluid flow in the presence of stratification and heat generation. Physica A: Statistical Mechanics and its Applications. 2020;540:123008. Available from: https://doi.org/10.1016/j.physa.2019.123008
16. Patil AB, Humane PP, Patil VS, Rajput GR. MHD Prandtl nanofluid flow due to convectively heated stretching sheet below the control of chemical reaction with thermal radiation. International Journal of Ambient Energy. 2022;43(1):4310–4322. Available from: https://doi.org/10.1080/01430750.2021.1888803
17. Ullah Z, Ullah I, Zaman G, Khan H, Muhammad T. Mathematical modeling and thermodynamics of Prandtl–Eyring fluid with radiation effect: a numerical approach. Scientific Reports. 2021;11(1):1–11. Available from: https://doi.org/10.1038/s41598-021-01463-4
18. Munjam SR, Gangadhar K, Seshadri R, Rajeswar M. Novel technique MDDIM solutions of MHD flow and radiative Prandtl-Eyring fluid over a stretching sheet with convective heating. International Journal of Ambient Energy. 2022;43(1):4850–4859. Available from: https://doi.org/10.1080/01430750.2021.1922498
19. Duraihem FZ, Khan AU, Saleem S, Shawana. Mathematical Analysis of Transverse Wall-Shearing Motion via Cross Flow of Nanofluid. Lubricants. 2023;11(3):1–15. Available from: https://doi.org/10.3390/lubricants11030138
20. Moran MJ, Gaggioli RA. Reduction of the Number of Variables in Systems of Partial Differential Equations, with Auxiliary Conditions. SIAM Journal on Applied Mathematics. 1968;16(1):202–215. Available from: https://doi.org/10.1137/0116018