• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2021, Volume: 14, Issue: 22, Pages: 1839-1854

Original Article

One Inflated Binomial Distribution and its Real-Life Applications

Received Date:02 April 2021, Accepted Date:27 May 2021, Published Date:29 June 2021


Objective: To introduce a one-inflated Binomial distribution (OIBD) and discuss its applications. Methods: Study its distributional properties, reliability characteristics, and estimation of its parameters using the method of moment estimation (MM) and maximum likelihood estimation (MLE). A simulation study has been conducted to see the behaviour of the MLEs. Two real-life examples are used to examine the pertinent of the proposed distribution. Findings The proposed one-inflated binomial distribution (OIBD) provides better fitting in terms of AIC, BIC, and KS test comparison to the other known distributions. Novelty: Develop a new statistical distribution to study the count data having inflated frequency at count one, along with the different statistical properties. The practical utility of the distribution is also discussed with real-life examples.


One inflated Binomial distribution, MM, MLE, KS, AIC and BIC


  1. Mallick A, Joshi R. Parameter Estimation and Application of Generalized Inflated Geometric DistributionJournal of Statistical Theory and Applications2018;17(3):491519. Available from: https://dx.doi.org/10.2991/jsta.2018.17.3.7
  2. Winai B, Siriporn S, Prasit P. The zero-inflated negative binomial-Erlang distribution: An application to highly pathogenic avian influenza H5N1 in ThailandSongklanakarin Journal of Science and Technology2018;40(6):14281436. Available from: https://rdo.psu.ac.th/sjstweb/journal/40-6/24.pdf
  3. Neyman J. On a New Class of "Contagious" Distributions, Applicable in Entomology and BacteriologyThe Annals of Mathematical Statistics1939;10(1):3557. Available from: https://dx.doi.org/10.1214/aoms/1177732245
  4. Feller W. On a General Class of "Contagious" DistributionsThe Annals of Mathematical Statistics1943;14(4):389400. Available from: https://dx.doi.org/10.1214/aoms/1177731359
  5. Gupta PL, Gupta RC, Tripathi RC. Inflated modified power series distributions with applicationsCommunications in Statistics - Theory and Methods1995;24(9):23552374. Available from: https://dx.doi.org/10.1080/03610929508831621
  6. Murat M, Szynal D. Non–zero inflated modified power series distributionsCommunications in Statistics - Theory and Methods1998;27(12):30473064. Available from: https://dx.doi.org/10.1080/03610929808832272
  7. Beckett S, Jee J, Ncube T, Pompilus S, Washington Q, Singh A, et al. Zero-inflated Poisson (ZIP) distribution: parameter estimation and applications to model data from natural calamitiesInvolve, a Journal of Mathematics2014;7:751767. Available from: https://dx.doi.org/10.2140/involve.2014.7.751
  8. Nanjundan G, Sadik P. A characterization of Zero-inflated binomial modelInternational journal of mathematics and computer research2015;3(10):11881190. Available from: https://ijmcr.in/index.php/ijmcr/article/view/142
  9. Suresh R, Nanjundan G, Nagesh S, Pasha S. On a Characterization of Zero-Inflated Negative Binomial DistributionOpen Journal of Statistics2015;05(06):511513. Available from: https://dx.doi.org/10.4236/ojs.2015.56053
  10. Nanjundan G, Pasha S. A Note on the Characterization of Zero-Inflated Poisson ModelOpen Journal of Statistics2015;05(02):140142. Available from: https://dx.doi.org/10.4236/ojs.2015.52017
  11. Abdulrazak ARS. On the Zero-One Inflated Poisson distributionInternational journal of Statistical Distributions and Applications2016;2(4):4248. Available from: https://doi.org/10.11648/j.ijsd.20160204.11
  12. Mwalili SM, Lesaffre E, Declerck D. The zero-inflated negative binomial regression model with correction for misclassification: an example in caries researchStatistical Methods in Medical Research2008;17(2):123139. Available from: https://dx.doi.org/10.1177/0962280206071840
  13. Sakthivel KM, Rajitha C. Estimation of Zero-Inflation Parameter in Zero-Inflated Poisson ModelInternational Journal of Mathematics Trends and Technology2018;56(2):135140. Available from: https://doi.org/10.14445/22315373/IJMTT-V56P519
  14. Jornsatian C, Bodhisuwan W. Zero-one inflated negative binomial - beta exponential distribution for count data with many zeros and onesCommunications in Statistics - Theory and Methods2021;p. 115. Available from: https://dx.doi.org/10.1080/03610926.2021.1898642
  15. Sheldon R. SimulationElsevier Academic Press. 2012.
  16. Malhotra A, Vanneman R, Kishor S. Fertility, Dimensions of Patriarchy, and Development in IndiaPopulation and Development Review1995;21(2):281305. Available from: https://dx.doi.org/10.2307/2137495
  17. Kulkarni PM. Gender preference contraceptive prevalence: Evidence of regional variationsEconomic and Political Weekly1999;34(42-43):30583062. Available from: https://www.jstor.org/stable/4408537
  18. Arvind KS, Yadava R, Tiwari AK. Measuring Son Preference Through Number of Children BornDemography India2018;47(2):6782. Available from: http://demographyindia.in/article_document/73/817706.pdf
  19. Kenneth PB, David RA. Multimodel inference: understanding AIC and BIC in Model SelectionSociological Methods & Research2004;33(2):261304. Available from: https://doi.org/10.1177/0049124104268644


© 2021 Rahman et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.