• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology

Article

Indian Journal of Science and Technology

Year: 2021, Volume: 14, Issue: 38, Pages: 2888-2898

Original Article

Optimization Studies on Green Synthesis of Silver Nanoparticles from different Plant Extracts Using Taguchi Design

Received Date:11 June 2021, Accepted Date:16 September 2021, Published Date:15 November 2021

Abstract

Background/Objectives: The main objective of the present study is to screen an efficient plant extract sources for the green synthesis of silver nanoparticles (AgNPs) and optimization of various conditions for the synthesis using a statistical methodology like Taguchi design. The antimicrobial activity of the synthesized AgNPs against common wound causing dermal pathogens was also checked. Methods: The conditions for green synthesis, such as the concentration of silver nitrate, amount of plant extract, synthesis reaction time, temperature, and pH of the plant extract, were optimized by using Taguchi design (L27type). Ultraviolet-visible spectroscopy, scanning electron microscopy (SEM), and Transmission electron microscopy (TEM) were used for the characterization of produced green AgNPs. The antibacterial activity of the obtained green AgNPs was tested against most common wound forming dermal pathogens like S1(Staphylococcus aureus-Multi drug-resistant, hospital strain), S2 (Staphylococcus aureus-pimple source), S3 (Staphylococcus aureuswound sample), S4 (Pseudomonas sp.-hospital sample), and S5 (Pseudomonas sp.-wound sample) using Agar well diffusion method. Findings: Thirty different aqueous leaf extracts were screened for AgNPs using a flask level unidimensional study. Among all, the aqueous leaf extract of Aloe vera was found to be the most suitable for the green synthesis of AgNPs. The optimum conditions for the green synthesis of AgNPs were observed as pH- 7.0, temperature 35◦C, 10mM silver nitrate (AgNO3), 50% (v/v) plant extract for a time period of 30 min. Novelty/Applications: The Taguchi statistical method was used for the optimization of the green synthesis of AgNPs with suitable experiential tests. Finally, this rapid and easy process of green synthesis of AgNPs using aqueous leaf extract of Aloe vera demonstrated broad spectrum activity as an antibacterial agent against the wound-causing dermal pathogens in the medical field by exhibiting the promising minimum inhibitory concentration (MIC) of AgNPs as  0.0535mg/L.

Keywords: Green synthesis; silver nanoparticles; Statistical optimization; Taguchi method Antibacterial activity

References

  1. Bar H, Bhui DK, Sahoo GP, Sarkar P, De SP, Misra A. Green synthesis of silver nanoparticles using latex of Jatropha curcas. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2009;339(1-3):134–139. Available from: https://dx.doi.org/10.1016/j.colsurfa.2009.02.008
  2. Chung IM, Park I, Seung-Hyun K, Thiruvengadam M, Rajakumar G. Plant-Mediated Synthesis of Silver Nanoparticles: Their Characteristic Properties and Therapeutic Applications. Nanoscale Research Letters. 2016;11(1):40–54. Available from: https://dx.doi.org/10.1186/s11671-016-1257-4
  3. Navazi Z, Ranjbar M, Pazouki F, Halek S. Investigation of culture conditions for biosynthesis of silver nanoparticles using Aspergillus fumigates. Iran J. Biotechnol. 2010;8(1):56–61. Available from: http://www.ijbiotech.com/article_7105.html
  4. Kowshik M, Ashtaputre S, Kharrazi S, Vogel W, Urban J, Kulkarni SK, et al. Extracellular synthesis of silver nanoparticles by a silver-tolerant yeast strain MKY3. Nanotechnology. 2003;14(1):95–100. Available from: https://dx.doi.org/10.1088/0957-4484/14/1/321
  5. Abel S, Tesfaye JL, Shanmugam R, Dwarampudi LP, Lamessa G, Nagaprasad N, et al. Green Synthesis and Characterizations of Zinc Oxide (ZnO) Nanoparticles Using Aqueous Leaf Extracts of Coffee (Coffea arabica) and Its Application in Environmental Toxicity Reduction. Journal of Nanomaterials. 2021;2021:1–6. Available from: https://dx.doi.org/10.1155/2021/3413350
  6. Degefa A, Bekele B, Jule LT, Fikadu B, Ramaswamy S, Dwarampudi LP, et al. Green Synthesis, Characterization of Zinc Oxide Nanoparticles, and Examination of Properties for Dye-Sensitive Solar Cells Using Various Vegetable Extracts. Journal of Nanomaterials. 2021;2021:1–9. Available from: https://dx.doi.org/10.1155/2021/3941923
  7. Jule LT, Ramaswamy K, Nagaprasad N, Shanmugam V, Vignesh V. Design and analysis of serial drilled hole in composite material. Materials Today: Proceedings. 2021;45:5759–5763. Available from: https://dx.doi.org/10.1016/j.matpr.2021.02.587
  8. Ltesfaye B, Bekele A, Saka N, Nagaprasad K, Sivaramasundaram R, Krishnaraj. Investigating spectroscopic and structural properties of Cr doped TiO2 NPs synthesized through sol gel deposition technique. Tierärztliche Praxis. 2021;41:860–872.
  9. Raj A, Peskin CS, Tranchina D, Vargas DY, Tyagi S. Stochastic mRNA Synthesis in Mammalian Cells. PLoS Biology. 2006;4(10):e309. Available from: https://dx.doi.org/10.1371/journal.pbio.0040309
  10. Ghaffari-Moghaddam M, Hadi-Dabanlou R. Plant mediated green synthesis and antibacterial activity of silver nanoparticles using Crataegus douglasii fruit extract. Journal of Industrial and Engineering Chemistry. 2014;20(2):739–744. Available from: https://dx.doi.org/10.1016/j.jiec.2013.09.005
  11. Mahendra R, Nelson D. Metal Nanoparticles in Microbiology. Springer. 2011.
  12. Hesgazy S, Lamis D, Shabaan GH, Rabie GH, Diana SR. Biosynthesis of silver nanoparticles using cell-free callus exudates of Medicago sativa. L. Pakistan Journal of Botany. 2015;47:1825–1829. Available from: https://www.pakbs.org/pjbot/PDFs/47(5)/28.pdf
  13. Srinivas B, Srikanth M, Prasanth S, Padma N. Green synthesis of silver nanoparticles using leaf extract and fruit pulp of Azadirachta indica. International Journal of Sciences & Applied Research. 2017;4:49–56. Available from: https://www.ijsar.in/Admin/pdf/418.pdf
  14. Asokan R, Dinesh M, Santosh R, Arumugam V, Stanley JA. Experimental Investigation of Failure Mechanisms in GFRP Lap Joint using Acoustic Emission. International Journal of Vehicle Structures and Systems. 2012;4:178–187. Available from: https://dx.doi.org/10.4273/ijvss.4.2.03
  15. Gardea-Torresdey JL, Gomez E, Peralta-Videa JR, Parsons JG, Troiani H, Jose-Yacaman M. Alfalfa Sprouts:  A Natural Source for the Synthesis of Silver Nanoparticles. Langmuir. 2003;19(4):1357–1361. Available from: https://dx.doi.org/10.1021/la020835i
  16. Haverkamp RG, Marshall AT. The mechanism of metal nanoparticle formation in plants: limits on accumulation. Journal of Nanoparticle Research. 2009;11(6):1453–1463. Available from: https://dx.doi.org/10.1007/s11051-008-9533-6
  17. Ankamwar B, Chaudhary M, Sastry M. Gold Nanotriangles Biologically Synthesized using Tamarind Leaf Extract and Potential Application in Vapor Sensing. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry. 2005;35:19–26. Available from: https://dx.doi.org/10.1081/sim-200047527
  18. Vyom P, Parashar R, Sharma B, Pandey A, . Partenium leaf extract mediated synthesis of silver nanoparticles: a novel approach towards weed utilization. Digest Journal of nanomaterials and biostructures. 2009;4:45–50.
  19. Abel S, Tesfaye JL, Kiran R, Deepak T, Ruby AU, Venkatesh S, et al. Studying the Effect of Metallic Precursor Concentration on the Structural, Optical, and Morphological Properties of Zinc Sulfide Thin Films in Photovoltaic Cell Applications. Advances in Materials Science and Engineering. 2021;2021:1–6. Available from: https://dx.doi.org/10.1155/2021/7443664
  20. Panáček A, Kvítek L, Prucek R, Kolář M, Večeřová R, Pizúrová N, et al. Silver Colloid Nanoparticles:  Synthesis, Characterization, and Their Antibacterial Activity. The Journal of Physical Chemistry B. 2006;110(33):16248–16253. Available from: https://dx.doi.org/10.1021/jp063826h
  21. Kassa B, Tesfaye JL, Bulcha B, Kiran R, Deepak T, Lal D, et al. Effect of Manganese Ions on Spectroscopic and Insulating Properties of Aluminophosphate Glasses. Advances in Materials Science and Engineering. 2021;2021:1–11. Available from: https://dx.doi.org/10.1155/2021/6253069
  22. Bondarenko O, Juganson K, Ivask A, Kasemets K, Mortimer M, Kahru A. Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: a critical review. Archives of Toxicology. 2013;87(7):1181–1200. Available from: https://dx.doi.org/10.1007/s00204-013-1079-4
  23. Liu X, Shan K, Shao X, Shi X, He Y, Liu Z, et al. Nanotoxic Effects of Silver Nanoparticles on Normal HEK-293 Cells in Comparison to Cancerous HeLa Cell Line. International Journal of Nanomedicine. 2021;Volume 16:753–761. Available from: https://dx.doi.org/10.2147/ijn.s289008
  24. Coseri S, Spatareanu A, Sacarescu L, Rimbu C, Suteu D, Spirk S, et al. Green synthesis of the silver nanoparticles mediated by pullulan and 6-carboxypullulan. Carbohydrate Polymers. 2015;116(13):9–17. Available from: https://dx.doi.org/10.1016/j.carbpol.2014.06.008
  25. Rai M, Yadav A, Gade A. Silver nanoparticles as a new generation of antimicrobials. Biotechnology Advances. 2009;27(1):76–83. Available from: https://dx.doi.org/10.1016/j.biotechadv.2008.09.002
  26. Padma P, Banu S, Kumari S. Studies on Green Synthesis of Copper Nanoparticles Using Punica granatum. Annual Research & Review in Biology. 2018;23(1):1–10. Available from: https://dx.doi.org/10.9734/arrb/2018/38894
  27. Nandal U, Bhardwaj RL. Aloe vera: a valuable wonder plant for food, medicine, and cosmetic use-a review. International Journal of Pharmaceutical Sciences Review and Research. 2012;p. 59–67. Available from: https://www.desertharvest.com/physicians/documents/General7.pdf
  28. Dang TMD, Le TTT, Fribourg-Blanc E, Dang MC. Synthesis and optical properties of copper nanoparticles prepared by a chemical reduction method. Advances in Natural Sciences: Nanoscience and Nanotechnology. 2011;2(1):015009. Available from: https://dx.doi.org/10.1088/2043-6262/2/1/015009
  29. Zhang Y, Yang D, Kong Y, Wang X, Pandoli O, Gao G. Synergetic Antibacterial Effects of Silver Nanoparticles@Aloe Vera Prepared via a Green Method. Nano Biomedicine and Engineering. 2010;2(4). Available from: https://dx.doi.org/10.5101/nbe.v2i4.p252-257
  30. Kim BH, Hackett MJ, Park J, Hyeon T. Synthesis, Characterization, and Application of Ultrasmall Nanoparticles. Chemistry of Materials. 2014;26(1):59–71. Available from: https://dx.doi.org/10.1021/cm402225z
  31. KHK, Venkatesh N, Bhowmik H, Kuila A. Metallic Nanoparticle: A Review. Biomedical Journal of Scientific & Technical Research. 2018. doi: 10.26717/BJSTR.2018.04.001011
  32. Rucha MD, Venu G, Sanjeev K, Jha PK. Size Distribution of Silver Nanoparticles: UV-Visible Spectroscopic Assessment. Nanoscience and Nanotechnology Letters. 2012;(4) 30–34. Available from: http://dx.doi.org/10.1166/nnl.2012.1278
  33. Huang H, Yang X. Synthesis of polysaccharide-stabilized gold and silver nanoparticles: a green method. Carbohydrate Research. 2004;339(15):2627–2631. Available from: https://dx.doi.org/10.1016/j.carres.2004.08.005
  34. Velhal SG, Latpate RV, Kulkarni SD, Jaybhaye RG. Taguchi Design for Parameter Optimization of Size-Controlled Synthesis of Silver Nanoparticles. International Journal of Emerging Technologies in Computational and Applied Sciences. 2015;12:144–149.
  35. Chitra K, Annadurai G. Antibacterial Activity of pH-Dependent Biosynthesized Silver Nanoparticles against Clinical Pathogen. BioMed Research International. 2014;2014:1–6. Available from: https://dx.doi.org/10.1155/2014/725165
  36. Baker C, Pradhan A, Pakstis L, Pochan D, Shah SI. Synthesis and Antibacterial Properties of Silver Nanoparticles. Journal of Nanoscience and Nanotechnology. 2005;5(2):244–249. Available from: https://dx.doi.org/10.1166/jnn.2005.034
  37. Baptista PV, McCusker MP, Carvalho A, Ferreira DA, Mohan NM, Martins M, et al. Nano-Strategies to Fight Multidrug Resistant Bacteria—“A Battle of the Titans”. Frontiers in Microbiology. 2018;9:1441. Available from: https://dx.doi.org/10.3389/fmicb.2018.01441

Copyright

© 2021 Kumari et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)

DON'T MISS OUT!

Subscribe now for latest articles and news.