• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2024, Volume: 17, Issue: 11, Pages: 1059-1069

Original Article

Optimizing Laser Cladding Parameters on AZ61 Magnesium Alloy with Inconel 625 Powder through Grey Relation Analysis

Received Date:23 January 2024, Accepted Date:12 February 2024, Published Date:05 March 2024


Objective: To investigate the mechanical and tribological behaviors of the surface-modified AZ61 alloy reinforced with Inconel 625 using the laser cladding method. Methodology: Surface modification was done with the help of a laser cladding machine by changing the input parameters such as Laser Power (LP), Scanning Speed (SS) and Powder Feed Rate (PFR). Experimentation was done as per L9 Taguchi design, and Grey Relational Analysis (GRA) was used to optimize the input parameters of surface-modified AZ61 alloy reinforced with Inconel 625 particles for measuring the output responses microhardness and wear rate. Findings: Based on the experimental findings, it was observed that laser power accounts for 76.13% of the variation in microhardness, while the powder feed rate predominantly affects wear volume, influencing it by 61.9%, as confirmed by grey relational grade analysis. To identify the most suitable processing parameters across different objectives, this study employs the grey relational method. The outcomes indicate that the microhardness and wear volume of the composite are notably impacted by the Inconel 625 powder feed rate. By integrating Grey relational analysis with multiple optimization objectives, a transparent method is established, resulting in a clad material with higher microhardness and reduced wear volume. The optimized processing parameters forecasted grey relational grades with a negligible error rate of 1.89%, with a significant contribution of 75.17% attributed to laser power. This investigation underscores the potential of multi-objective optimization in improving the mechanical properties of laser-cladded surfaces and establishes a theoretical framework for this approach. Novelty: This research work exhibits a unique method to modify the surface of the substrate by reinforcing Inconel 625 particle as a dense coating by adopting laser cladding technique.

Keywords: Inconel 625, Laser Cladding, Optimization, GRA


  1. Unnikrishnan MA, Dhas JER, Lewise KAS, Varghese JC, Ganesh M. Challenges on friction stir welding of magnesium alloys in automotives. Materials Today: Proceedings. 2023. Available from: https://doi.org/10.1016/j.matpr.2023.03.789
  2. Das AK. Recent trends in laser cladding and alloying on magnesium alloys: A review. Materials Today: Proceedings. 2022;51(Part 1):723–727. Available from: https://doi.org/10.1016/j.matpr.2021.06.217
  3. Sharma P, Singh SP, Parakh SK, Tong YW. Health hazards of hexavalent chromium (Cr (VI)) and its microbial reduction. Bioengineered. 2022;13(3):4923–4938. Available from: https://doi.org/10.1080/21655979.2022.2037273
  4. Mouli GC, Chakradhar RPS, Srivastava M, Barshilia HC. Cold-Sprayed Cu-Zn-Al2O3 Coating on Magnesium Alloy: Enhanced Microhardness and Corrosion Behavior. Journal of Materials Engineering and Performance. 2023;32(14):6160–6174. Available from: https://doi.org/10.1007/s11665-022-07551-4
  5. Sampatirao H, Radhakrishnapillai S, Dondapati S, Parfenov E, Nagumothu R. Developments in plasma electrolytic oxidation (PEO) coatings for biodegradable magnesium alloys. Materials Today: Proceedings. 2021;46(Part 2):1407–1415. Available from: https://doi.org/10.1016/j.matpr.2021.02.650
  6. Riquelme A, Rodrigo P. An Introduction on the Laser Cladding Coatings on Magnesium Alloys. Metals. 2021;11(12):1–14. Available from: https://doi.org/10.3390/met11121993
  7. Shayanfar P, Daneshmanesh H, Janghorban K. Parameters Optimization for Laser Cladding of Inconel 625 on ASTM A592 Steel. Journal of Materials Research and Technology. 2020;9(4):8258–8265. Available from: https://doi.org/10.1016/j.jmrt.2020.05.094
  8. Fan P, Zhang G. Study on process optimization of WC-Co50 cermet composite coating by laser cladding. International Journal of Refractory Metals and Hard Materials. 2020;87:105133. Available from: https://doi.org/10.1016/j.ijrmhm.2019.105133
  9. Yi P, Zhan X, He Q, Liu Y, Xu P, Xiao P, et al. Influence of laser parameters on graphite morphology in the bonding zone and process optimization in gray cast iron laser cladding. Optics & Laser Technology. 2019;109:480–487. Available from: https://doi.org/10.1016/j.optlastec.2018.08.028
  10. Wu Z, Li T, Li Q, Shi B, Li X, Wang X, et al. Process optimization of laser cladding Ni60A alloy coating in remanufacturing. Optics & Laser Technology. 2019;120:105718. Available from: https://doi.org/10.1016/j.optlastec.2019.105718
  11. Sundaraselvan S, Senthilkumar N, Tamizharasan T, Sait AN. Surface modification of AZ61 Magnesium Alloy with Nano TiO2/Al2O3 using Laser Cladding Technique. Materials Today: Proceedings. 2020;21(Part 1):717–721. Available from: https://doi.org/10.1016/j.matpr.2019.06.745
  12. Asghar O, Li-Yan L, Yasir M, Chang-Jiu L, Cheng-Xin L. Enhanced Tribological Properties of LA43M Magnesium Alloy by Ni60 Coating via Ultra-High-Speed Laser Cladding. Coatings. 2020;10(7):1–14. Available from: https://doi.org/10.3390/coatings10070638
  13. Bu R, Jin A, Sun QA, Zan W, He R. Study on laser cladding and properties of AZ63-Er alloy for automobile engine. Journal of Materials Research and Technology. 2020;9(3):5154–5160. Available from: https://doi.org/10.1016/j.jmrt.2020.03.032
  14. Liu H, Tan CKI, Wei Y, Lim SH, Lee CJJ. Laser-cladding and interface evolutions of inconel 625 alloy on low alloy steel substrate upon heat and chemical treatments. Surface and Coatings Technology. 2020;404:126607. Available from: https://doi.org/10.1016/j.surfcoat.2020.126607
  15. Bloemer PRA, Pacheco JT, Cunha A, Veiga MT, Filho OCDM, Meura VH, et al. Laser Cladding of Inconel 625 on AISI 316L: Microstructural and Mechanical Evaluation of Parameters Estimated by Empirical-Statistical Model. Journal of Materials Engineering and Performance. 2022;31(1):211–220. Available from: https://doi.org/10.1007/s11665-021-06147-8
  16. Singh AK, Sadhu A, Das AK, Pratihar DK, Choudhury AR. An approach towards energy and material efficient additive manufacturing: Multi-objective optimization of stellite-6 deposition on SS304. Optics & Laser Technology. 2022;148:107799. Available from: https://doi.org/10.1016/j.optlastec.2021.107799
  17. Samuel SC, Arivarasu M, Prabhu TR. High temperature dry sliding wear behaviour of laser powder bed fused Inconel 718. Additive Manufacturing. 2020;34:101279. Available from: https://doi.org/10.1016/j.addma.2020.101279
  18. Lian G, Xiao S, Zhang Y, Jiang J, Zhan Y. Multi-objective optimization of coating properties and cladding efficiency in 316L/WC composite laser cladding based on grey relational analysis. The International Journal of Advanced Manufacturing Technology. 2021;112(5-6):1449–1459. Available from: https://doi.org/10.1007/s00170-020-06486-1
  19. Mugilan T, Sridhar N, Sathishkumar GB. Multi response hybrid optimization of sustainable high-speed end milling on 89.7Ti-6Al-4V. Materials Today: Proceedings. 2022;65(Part 8):3170–3176. Available from: https://doi.org/10.1016/j.matpr.2022.05.362


© 2024 Sathishkumar et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.