• P-ISSN 0974-6846 E-ISSN 0974-5645

# Indian Journal of Science and Technology

## Article

• VIEWS 183
• PDF 52

Indian Journal of Science and Technology

Year: 2024, Volume: 17, Issue: Special Issue 1, Pages: 136-143

Original Article

## Outer Triple Connected Corona Domination Number of Graphs

Received Date:29 August 2023, Accepted Date:05 March 2024, Published Date:31 May 2024

## Abstract

Background/ Objective: Given a graph G, a dominating set is said to be corona dominating set if every vertex such that or there exist a vertex if then . A corona dominating set is said to be an outer triple connected corona dominating set if any three vertices in lie on a path. The minimum cardinality taken over all the outer triple connected corona dominating sets of is called outer triple connected corona dominating number and it is denoted by . The study aims to find the outer triple connected corona domination number of some graphs. Method: To obtain outer triple connected corona domination number say m by proving and . To prove for a graph G we find a outer triple connected corona dominating set of G with cardinality m and then to prove we prove by contradiction. Findings: We investigated the above parameter for some derived graphs of path, cycle and wheel graph. Novelty : Outer triple connected corona domination number is a new concept in which the conditions of corona domination and triple connected are linked together.

Keywords: Corona Domination, Pendent Vertex, Support Vertex, Triple Connected, Isolated Vertex, Pendant vertes

## References

1. Haynes TW, Hedetniemi S, Slater P. Fundamentals of domination in graphs. CRC Press. 2013. Available from: https://doi.org/10.1201/9781482246582
2. Priya K, Mahadevan G, Sivagnanam C. Generalization of restrained triple connected outer perfect domination number for square of grid graphs. The Journal of Analysis. 2023;p. 1–4. Available from: https://dx.doi.org/10.1007/s41478-023-00656-6
3. Mahadevan G, Suganthi V, Sivagnanam M. Corona Domination Number of Graphs. In: International Conference on mathematical Modelling and Computational Intelligence Techniques. (pp. 255-265) Springer Nature. 2021.
4. Soleha M, Purwanto, Rahmadani D. Some snake graphs are edge odd graceful. AIP Conference Proceedings. 2023;2540. Available from: http://dx.doi.org/10.24018/ejmath.2023.4.2.193
5. Eakawinrujee P, Trakultraipruk N. γ-Paired dominating graphs of lollipop, umbrella and coconut graphs. Electronic Journal of Graph Theory and Applications. 2023;11(1):65. Available from: https://dx.doi.org/10.5614/ejgta.2023.11.1.6
6. Ponnuchamy T, Mahadevan G, Sivagnanam C. Outer perfect connected at-most twin domination number of a graph. AIP Conf. Proc. 2023;24:20013.
7. Mahadevan G, Anuthiya S. At most Twin Extendable Separated Domination number of a graph. Advances in Mathematics: Scientific Journal. 2020;9(6):4203–4212. Available from: https://dx.doi.org/10.37418/amsj.9.6.102
8. Ponnuchamy T, Mahadevan G, Sivagnanam C. Outer perfect connected at-most twin domination number of a graph. AIP Conference Proceedings . 2023;2718. Available from: https://doi.org/10.1063/5.0136971
9. Ponraj R, AG, Somasndaram S. Pair difference cordiality of mirror graph, shadow graph and splitting graph of certain graphs. Maltepe Journal of Mathematics. 2022;4(1):24–32. Available from: https://dx.doi.org/10.47087/mjm.1089672
10. Hamja J, Aniversario IS, Merca CI. Weakly Connected Hop Domination in Graphs Resulting from Some Binary Operations. European Journal of Pure and Applied Mathematics. 2023;16(1):454–464. Available from: https://dx.doi.org/10.29020/nybg.ejpam.v16i1.4587
11. Kazemnejad F, Pahlavsay B, Palezzato E, Torielli M. Total domination number of middle graphs. Electronic Journal of Graph Theory and Applications. 2022;10(1):275. Available from: https://dx.doi.org/10.5614/ejgta.2022.10.1.19
12. Hamada T, Yoshimura I. Traversability and connectivity of the middle graph of a graph. Discrete Mathematics. 1976;14(3):247–255. Available from: https://dx.doi.org/10.1016/0012-365x(76)90037-6