• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2023, Volume: 16, Issue: 11, Pages: 850-861

Original Article

Performance Mapping of Mixed GSCM Architectures by using Holistic GTFs-PI-Degree of Similarity Approach

Received Date:31 January 2023, Accepted Date:06 March 2023, Published Date:25 March 2023


Background/Objective: The idea of Green Supply Chain Management (GSCM) gained the momentum among the current scholars to manage and control the pollution cum Global Warming (GW) of production industries 4.0. It is absorbed that standard or ideal GSCM performance of industry 4.0 can be gained by recognizing the current performance of GSCM architectures from ideal performance level. Recently, Performance Evaluation and Measurement (PEM) approaches towards mapping the performance of GSCM architectures industry 4.0 are still least explored by previous researchers. The objective of research work is diverted towards assisting the Green Entrepreneurs (GEs) of Industry 4.0 from a Generalized Trapezoidal Fuzzy set (GTFs)-based decision support system for recognizing the poor performing GSCM architectures industry 4.0. Method: The author proposed the holistic approach to provide the solution to aforesaid dilemma, where GTFs-PI (Performance Index) approach is executed to estimation the overall GSCM performance of each architectures at 2nd level (in the terms of GTFs-PI) and subsequently, DoS (Degree of Similarity) approach is employed for identifying the weak/poor performing GSCM architectures industry 4.0 (to be mileage up to standard/ideal performance of GSCM architecture industry 4.0). Finding: An empirical case study of a shaft production industry 4.0 (compliance the GSCM architectures), is demonstrated to validate the presented research activity. The architecture’s performances are advised to accelerate up to 6.0564349626% or sp=0.88 (is considered as ideal as per holistic opinion of DMs). Novelty : The work is novel in the terms of development of model and holistic approach: (1) constructed model is creative, innovative in nature as dealt with universal GSCM strategies linked to architectures industry 4.0. (2) the approach package is holistic in nature, can be used to map the performance of each GSCM architectures and divide them as weak and strong performing architectures and suggesting insights to obtain mileage up the GSCM architectures 4.0 up to standard/ideal level.

Keywords: Green SC; Model; Linguistic Information; Performance Measurement (PM); GFNs-Performance Index (PI)


  1. Abd-Elrahman AEHH, Kamal JMA. Relational capital, service quality and organizational performance in the Egyptian telecommunication sector. International Journal of Emerging Markets. 2022;17(1):299–324. Available from: https://doi.org/10.1108/IJOEM-11-2019-0983
  2. Chattopadhyay R, Das PP, Chakraborty S. Development of a Rough-MABAC-DoE-based Metamodel for Supplier Selection in an Iron and Steel Industry. Operational Research in Engineering Sciences: Theory and Applications. 2022;5(1):20–40. Available from: https://doi.org/10.31181/oresta190222046c
  3. Fazlollahtabar H, Kazemitash N. GREEN SUPPLIER SELECTION BASED ON THE INFORMATION SYSTEM PERFORMANCE EVALUATION USING THE INTEGRATED BEST-WORST METHOD. Facta Universitatis, Series: Mechanical Engineering. 2021;19(3):345. Available from: https://doi.org/10.22190/FUME201125029F
  4. Garay-Rondero CL, Martinez-Flores JL, Smith NR, Morales SOC, Aldrette-Malacara A. Digital supply chain model in Industry 4.0. Journal of Manufacturing Technology Management. 2019;31(5):887–933. Available from: https://doi.org/10.1108/JMTM-08-2018-0280
  5. Sahu AK, Sahu NK, Sahu AK. Application of integrated TOPSIS in ASC index: partners benchmarking perspective. Benchmarking: An International Journal. 2016;23(3):540–563. Available from: https://doi.org/10.1108/BIJ-03-2014-0021
  6. Kunrath TL, Dresch A, Veit DR. Supply chain management and industry 4.0: a theoretical approach. Brazilian Journal of Operations & Production Management. 2022;20(1):12–63. Available from: https://doi.org/10.14488/BJOPM.1263.2023
  7. Schmidt MC, Veile JW, Müller JM, Voigt KI. Industry 4.0 implementation in the supply chain: a review on the evolution of buyer-supplier relationships. International Journal of Production Research. 2023;p. 1–18. Available from: https://doi.org/10.1080/00207543.2022.2120923
  8. Makinde OA, Opeyeolu TL. A review of supply chain 4IR management strategy for appraising the manufacturing industry's potentials and shortfalls in the 21st century. 4th International Conference on Industry 4.0 and Smart Manufacturing-Procedia Computer Science. 2023;217:513–525. Available from: https://doi.org/10.1016/j.procs.2022.12.247
  9. Raj A, Dwivedi G, Sharma A, Jabbour ABLDS, Rajak S. Barriers to the adoption of industry 4.0 technologies in the manufacturing sector: An inter-country comparative perspective. International Journal of Production Economics. 2020;224:107546. Available from: https://doi.org/10.1016/j.ijpe.2019.107546
  10. Srivastava A, Kumar P, Mateen A. Supplier development under cooperative and non-cooperative investment structures. Benchmarking: An International Journal. 2021;28(10):3137–3160. Available from: https://doi.org/10.1108/BIJ-09-2020-0502
  11. Sharma M, Alkatheeri H, Jabeen F, Sehrawat R. Impact of COVID-19 pandemic on perishable food supply chain management: a contingent Resource-Based View (RBV) perspective. The International Journal of Logistics Management. 2022;33(3):796–817. Available from: https://doi.org/10.1108/IJLM-02-2021-0131
  12. Saoussane S, Anici J, Jairo RM. Uncovering Industry 4.0 technology attributes in sustainable supply chain 4.0: A systematic literature review. Business Strategy and the Environment. 2023. Available from: https://doi.org/10.1002/bse.3358
  13. Ahmed KAA, Sahu AK, Sahu AK, Sahu NK. Quantify the Behaviour Intention of Individuals to Control SC Performance by Exploring Cloud Storage Services. International Journal of Technology and Human Interaction. 2022;18(7):1–28. Available from: https://doi.org/10.4018/IJTHI.306227
  14. Bag S, Sahu AK, Kilbourn P, Pisa N, Dhamija P, Sahu AK. Modeling barriers of digital manufacturing in a circular economy for enhancing sustainability. International Journal of Productivity and Performance Management. 2022;71(3):833–869. Available from: https://doi.org/10.1108/IJPPM-12-2020-0637
  15. Bag S, Viktorovich DA, Sahu AK, Sahu AK. Barriers to adoption of blockchain technology in green supply chain management. Journal of Global Operations and Strategic Sourcing. 2021;14(1):104–133. Available from: https://doi.org/10.1108/JGOSS-06-2020-0027
  16. Sahu AK, Katyayan A, Khandey U, Jangde P, Sahu AK, Sahu NK. Adaptation of block chain technology in SCM for steering managerial strategies: investigative study under Indian context. Journal of International Logistics and Trade. 2023.
  17. Wang W, Huang L, Zhu Y, Jiang L, Sahu AK, Sahu AK, et al. Decision support system toward evaluation of resilient supplier: A novel fuzzy gain-loss computational approach. Kybernetes. 2020;49(6):1741–1765. Available from: https://doi.org/10.1108/K-05-2019-0345
  18. Sahu AK, Sahu NK, Sahu AK. A Review on the Research Growth of Industry 4.0: IIoT Business Architectures Benchmarking. International Journal of Business Analytics (IJBAN). 7(1):77–97. Available from: https://doi.org/10.4018/IJBAN.2020010105
  19. Scholten K, Donk DPV, Power D, Braeuer S. Contextualizing resilience to critical infrastructure maintenance supply networks. Supply Chain Management: An International Journal. 2023;28(7):1–14. Available from: https://doi.org/10.1108/SCM-02-2022-0078
  20. Ramos E, Patrucco AS, Chavez M. Dynamic capabilities in the “new normal”: a study of organizational flexibility, integration and agility in the Peruvian coffee supply chain. Supply Chain Management: An International Journal. 2023;28(1):55–73. Available from: https://doi.org/10.1108/SCM-12-2020-0620
  21. Santos LC, Reul LMA, Gohr CF. A graph-theoretic approach for assessing the leanness level of supply chains. Supply Chain Management: An International Journal. 2023;28(1):74–89. Available from: https://doi.org/10.1108/SCM-02-2021-0079
  22. Picasso FG, Biazzin C, Paiva EL, Partyka RB. Socially responsible supply chain initiatives and their outcomes: a taxonomy of manufacturing companies. Supply Chain Management: An International Journal. 2023;28(1):90–106. Available from: https://doi.org/10.1108/SCM-11-2020-0578
  23. Goudarzi FS, Bergey P, Olaru D. Behavioral operations management and supply chain coordination mechanisms: a systematic review and classification of the literature. Supply Chain Management: An International Journal. 2023;28(1):140–161. Available from: https://doi.org/10.1108/SCM-03-2021-0111
  24. Islam MT, Chadee D, Polonsky MJ. How and when does relational governance impact lead-time performance of developing-country suppliers in global value chains? Supply Chain Management: An International Journal. 2023;28(1):179–192. Available from: https://doi.org/10.1108/SCM-05-2021-0255
  25. Umar M, Khan SAR, Yusliza MY, Ali S, Yu Z. Industry 4.0 and green supply chain practices: an empirical study. International Journal of Productivity and Performance Management. 2022;71(3):814–832. Available from: https://doi.org/10.1108/IJPPM-12-2020-0633
  26. Abhijeet G, Mogale DG, Michael B, Lohithaksha MM, Hamid M. Link between Industry 4.0 and green supply chain management: Evidence from the automotive industry. Computers & Industrial Engineering. 2022;169. Available from: https://doi.org/10.1016/j.cie.2022.108303
  27. Chauhan S, Singh R, Gehlot A, Akram SV, Twala B, Priyadarshi N. Digitalization of Supply Chain Management with Industry 4.0 Enabling Technologies: A Sustainable Perspective. Processes. 2023;11(1):96. Available from: https://doi.org/10.3390/pr11010096
  28. Zheng T, Ardolino M, Bacchetti A, Perona M. The road towards industry 4.0: a comparative study of the state-of-the-art in the Italian manufacturing industry. Benchmarking: An International Journal. 2023;30(1):307–332. Available from: https://doi.org/10.1108/BIJ-01-2021-0056
  29. Wankhede VA, Vinodh S. Benchmarking Industry 4.0 readiness evaluation using fuzzy approaches. Benchmarking: An International Journal. 2023;30(1):281–306. Available from: https://doi.org/10.1108/BIJ-08-2021-0505


© 2023 Dhone. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee


Subscribe now for latest articles and news.