• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology

Article

Indian Journal of Science and Technology

Year: 2020, Volume: 13, Issue: 18, Pages: 1856-1866

Original Article

Photocatalytic and antibacterial activity of silver nanoparticles (AgNPs) using palm (Borassus flabellifer L.) water ( Pathaneer )

Received Date:01 April 2020, Accepted Date:12 May 2020, Published Date:17 June 2020

Abstract

To evaluate the photocatalytic and antibacterial activity of a biologically synthesized AgNPs mediated by palm (Borassus flabellifer) water against human pathogens. It is a potential candidate for preparing nanomedicine for constipation. 1mM of AgNO3 is prepared and mixed with an appropriate volume of Pathaneer and the reaction was made up to 100ml. The AgNPs were characterized by X-ray diffraction, FT-IR, UV-Vis analysis and HRTEM. The photocatalytic property and the antibacterial activity were carried out for the prepared AgNPs. The powder X-ray diffraction investigation reveals the FCC structure of AgNPs with a crystalline size of 27nm and a lattice strain of 0.4283. FT-IR confirms the presence of Ag+ from UV-Vis, the energy band gap was found to be 2.92 eV. HRTEM was used to calculate the diameter of AgNPs as 5-10nm. In Borassus flabellifer, the percentage degradation state of AgNPs was estimated as 87% at 180 minutes. AgNPs derived from Pathaneer have a large impact as antibacterial in the biomedical field. Since the aggressive chemicals are not involved in the preparation of AgNPs, it is used as an alternated biomedicine to reduce the toxicity of AgNPs and the photo degradation efficiency is high hence suitable for solar cells as well.

Keywords: AgNPs; HRTEM; photocatalytic; antibacterial activity

References

  1. HHJ, YT, S KW, ISH, et al. Highly reproducible polyol synthesis for silver nanocubes. J. Cryst. Growth. 2017;469:48–53.
  2. Khatoon UT, Rao GVSN, Mohan KM, Ramanaviciene A, Ramanavicius A, et al. Antibacterial and antifungal activity of silver nanospheres synthesized by tri-sodium citrate assisted chemical approach. Vacuum. 2017;146:259–265. doi: 10.1016/j.vacuum.2017.10.003
  3. Brobbey KJ, Haapanen J, Gunell M, Mäkelä JM, Eerola E, Toivakka M, et al. One step flame synthesis of silver nanoparticles for roll-to-roll production of antibacterial paper. Appl. surf.sci. 2017;420:558–565.
  4. He R, Ren F, Chen F. Embedded silver nanoparticles in KTP crystal produced by ion implantation. Materials Letters. 2017;193:158–160. doi: 10.1016/j.matlet.2017.01.119
  5. Dutta PP, Bordoloi M, Gogoi K, Roy S, Narzary B, Bhattacharyya DR, et al. Antimalarial silver and gold nanoparticles: Green synthesis, characterization and in vitro study. Biomedicine & Pharmacotherapy. 2017;91:567–580. doi: 10.1016/j.biopha.2017.04.032
  6. Singh T, Jyoti K, Patnaik A, Singh A, Chauhan R, Chandel SS, et al. Biosynthesis, characterization and antibacterial activity of silver nanoparticles using an endophytic fungal supernatant of Raphanus sativus. Journal of Genetic Engineering and Biotechnology. 2017;15(1):31–39. doi: 10.1016/j.jgeb.2017.04.005
  7. Horst CVd, Silwana B, Iwuoha E, Somerset V, et al. Synthesis and Characterization of Bismuth-Silver Nanoparticles for Electrochemical Sensor Applications. Analytical Letters. 2015;48(8):1311–1332. doi: 10.1080/00032719.2014.979357
  8. Sunita D, Danai-Tambhale, Parag V, Adhyapak, et al. A facile Green synthesis of silver nanoparticles using Psoralea Corylifolia L. seed extract and their in- Vitro Antibacterial activities. Int J Pharma Bio Sci. 2014;5(1):457–467.
  9. Nilesh S, Paul, Raman P, Yadav, et al. Biosynthesis of silver nanoparticles using plant seeds and their antimicrobial activity. Journal of Biomedical and Pharmaceutical Sciences. 2015;5(45):26–28. doi: 10.15272/ajbps.v5i45.711
  10. Nazeruddin GM, Prasad NR, Waghmare SR, Garadkar KM, Mulla IS, et al. Extracellular biosynthesis of silver nanoparticle using Azadirachta indica leaf extract and its anti-microbial activity. Journal of Alloys and Compounds. 2014;583:272–277. doi: 10.1016/j.jallcom.2013.07.111
  11. Palanivelu J, Kunjumon AMM, Suresh A, Nair, Dr, Ramalingam C, et al. Green synthesis of silver nanoparticles from Dracaena mahatma leaf extract and its antimicrobial activity. J. Pharm. Sci. & Res. 2015;7(9):690–695.
  12. Ahmad, Sharma S. Green synthesis of silvernanoparticles using extracts of Ananas comosus. Green and sustainable chemistry. 2012;2:141–147.
  13. Karthik K, Dhanuskodi S, Gobinath C, Prabukumar S, Sivaramakrishnan S, et al. Multifunctional properties of CdO nanostructures Synthesised through microwave assisted hydrothermal method. Materials Research Innovations. 2019;23:310–318. doi: 10.1080/14328917.2018.1475443
  14. Sahai A, Goswami N. Structural and vibrational properties of ZnO nanoparticles synthesized by the chemical precipitation method. Physica E: Low-dimensional Systems and Nanostructures. 2014;58:130–137. doi: 10.1016/j.physe.2013.12.009
  15. Maheshwari K, Saraswathi K, Sankari D, Arumugam P, et al. Evaluation of Bioactive chemical constituents by Gas chromatography-Mass spectrometry analysis isolated from Bacillus species. International Journal of Current Microbiology and Applied Sciences. 2016;5(11):488–497. doi: 10.20546/ijcmas.2016.501.049
  16. Akhlaghi S, Kalalee M, Mazinani S. Effect of zinc oxide nanoparticles on isothermal cure kinetics, morphology and mechanical properties of EPDM rubber. Thermochim Acta. 2012;527:91–98.
  17. Tatarchuk TR, Paliychuk ND, Bououdina M, Al-Najar B, Pacia M, Macyk W, et al. Effect of cobalt substitution on structural, elastic, magnetic and optical properties of zinc ferrite nanoparticles. Journal of Alloys and Compounds. 2018;731:1256–1266. doi: 10.1016/j.jallcom.2017.10.103
  18. Rajesh Babu B, Tatarchuk T. Elastic properties and antistructural modeling for Nickel-Zinc ferrite-aluminates. Materials Chemistry and Physics. 2018;207:534–541. doi: 10.1016/j.matchemphys.2017.12.084
  19. Liu X, Atwater M, Wang J, Huo Q. Extinction coefficient of gold nanoparticles with different sizes and different capping ligands. Colloids and Surfaces B: Biointerfaces. 2007;58(1):3–7. doi: 10.1016/j.colsurfb.2006.08.005
  20. Revathi V, Karthik K. Physico-chemical properties of semiorganic(Hexakis) Thiocarbamide nikel(II) nitrate single crystal. J.Emerg. Technol. Innov. Res. 2018;5(3):1035–2039.
  21. Budhiraja N, Sharma A, Dahiya S, Parmar R, Vidyadharan V, et al. Synthesis and Optical Characteristics of Silver Nanoparticles on Different Substrates. International Letters of Chemistry, Physics and Astronomy. 2013;19:80–88. Available from: doi:10.18052/www.scipress.com/ILCPA.19.80
  22. Karthik K, Dhanuskodi S, Gobinath C, Prabukumar S, Sivaramakrishnan S, et al. Photocatalytic and antibacterial activities of hydrothermally prepared CdO nanoparticles. Journal of Materials Science: Materials in Electronics. 2017;28(15):11420–11429. doi: 10.1007/s10854-017-6937-z

Copyright

© 2020 Thirumagal, Jeyakumari. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Published By Indian Society for Education and Environment (iSee)

DON'T MISS OUT!

Subscribe now for latest articles and news.