• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology

Article

Indian Journal of Science and Technology

Year: 2023, Volume: 16, Issue: 24, Pages: 1802-1809

Original Article

Photocatalytic Dye Degradation and Bacteriostatic Efficacy of Myco Synthesized Copper Nanoparticles by new Isolate Lentinus squarrosulus (Mont.) from Dead Trunk of Nerium odourum

Received Date:04 February 2023, Accepted Date:31 May 2023, Published Date:24 June 2023

Abstract

Objectives: To investigate the antibacterial activity and photo-catalytic efficacy of CuNPs synthesized from Lentinus squarrosulus used for the degradation of commercial textile dyes. Methods: The Copper nanoparticles (CuNPs) were biosynthesized using L. squarrosulus, a new fungal isolate from the dead trunk of N. odorum. The production of copper nanoparticles using mycoextract was simple and environmentally friendly, yielding stable copper nanoparticles in a variety of shapes. Fourier transform infrared spectroscopy (FTIR), Scanning electron microscopy (SEM), and EDAX analysis have all been used to establish that CuNPs were successfully formed. Findings: The research findings of the present study show that absorption spectra around 300 to 350 nm in UV-vis spectra followed by the presence of FT-IR peaks at 3680cm􀀀1 and 3856.7cm􀀀1 of proteins, carbohydrates, flavonoids, and tannins confirmed the myco-synthesis of copper nanoparticles using L. squarrosulus. Additionally, scanning electron microscopy examination of their external morphology reveals the existence of CuNPs with an average particle size of about 200 nm each, which are the primary spherical nanoparticles. Energy-dispersive x-ray (EDX) analysis was performed to further investigate the configuration of copper nanoparticles and it was found that, pure copper (03.51 percent) was present in CuNPs. The produced CuNPs were assessed for their antimicrobial activity and the results show that they were highly effective against Enterobacter aerogenes MTCC 2823 and Streptococcus mutans MTCC 497, while Escherichia coli MTCC 739 and Enterococcus faecalis MTCC 439 showed moderate antibacterial activity. Further, the photocatalytic dye degradation potentials of myco-synthesized CuNPs showed higher degradation efficiency in fast green dye, moderate degradation rate in Congo red dye and a very low degradation rate in the brilliant blue dye. Novelty : Preparation of mycogenic copper nanoparticlesfrom L. squarrosulus and their photocatalytic degradation of organic dyes are the novel part in this study as there is no remarkable study in specific CuNPs.

Keywords: Lentinus Squarrosulus; Antibacterial; Green Synthesis; Photocatalytic; Dye Degradation; Copper Nanoparticles

References

  1. El-Gendi H, Saleh AK, Badierah R, Redwan EM, El-Maradny YA, El-Fakharany EM. A Comprehensive Insight into Fungal Enzymes: Structure, Classification, and Their Role in Mankind’s Challenges. Journal of Fungi. 2021;8(1):23. Available from: https://doi.org/10.3390/jof8010023
  2. Ghareib M, Abdallah W, Tahon MA, Tallima A. Biosynthesis of Copper Oxide Nanoparticles Using the Preformed Biomass of Aspergillus Fumigatus and Their antibacterial and phytocatalytic activities. Digest Journal of Nanomaterials and Biostructures. 2019;14:291–303. Available from: https://chalcogen.ro/291_GhareibM.pdf
  3. Sudheer S, Bai RG, Muthoosamy K, Tuvikene R, Gupta VK, Manickam S. Biosustainable production of nanoparticles via mycogenesis for biotechnological applications: A critical review. Environmental Research. 2022;204:111963. Available from: https://doi.org/10.1016/J.ENVRES.2021.111963
  4. Lella D, S, Porta L, Tognetti N, Lombardi R, Nardin F, et al. White rot fungal impact on the evolution of simple phenols during decay of silver fir wood by UHPLC-HQOMS. Phytochemical Analysis. 2022;33:170–83. Available from: https://doi.org/10.1002/pca.3077
  5. Rajhans G, Barik A, Sen SK, Masanta A, Sahoo NK, Raut S. Mycoremediation and toxicity assessment of textile effluent pertaining to its possible correlation with COD. Scientific Reports. 2021;11(1):1–11. Available from: https://doi.org/10.1038/s41598-021-94666-8
  6. Lellis B, Fávaro-Polonio CZ, Pamphile JA, Polonio JC. Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnology Research and Innovation. 2019;3(2):275–290. Available from: https://doi.org/10.1016/j.biori.2019.09.001
  7. Khan I, Saeed K, Khan I. Nanoparticles: Properties, applications and toxicities. Arabian Journal of Chemistry. 2019;12(7):908–931. Available from: https://doi.org/10.1016/j.arabjc.2017.05.011
  8. Ugbogu EA, Akubugwo IE, Ude VC, Gilbert J, Ekeanyanwu B. Toxicological Evaluation of Phytochemical Characterized Aqueous Extract of Wild Dried<i>Lentinus squarrosulus</i>(Mont.) Mushroom in Rats. Toxicological Research. 2019;35(2):181–190. Available from: https://doi.org/10.5487/TR.2019.35.2.181
  9. Prateep A, Sumkhemthong S, Suksomtip M, Chanvorachote P, Chaotham C. Peptides extracted from edible mushroom: <i>Lentinus squarrosulus</i> induces apoptosis in human lung cancer cells. Pharmaceutical Biology. 2017;55(1):1792–1799. Available from: https://doi.org/10.1080/13880209.2017.1325913
  10. Abiodun OO, Alege AM, Ezurike PU, Nkumah A, Adelowo O, Oke TA. Lentinus squarrosulus Mont. Mushroom: Molecular Identification. In vitro Anti-Diabetic. 2022;19:642–650. Available from: https://doi.org/10.4274/tjps.galenos.2021.72798
  11. Razmavar S, Abdulla MA, Ismail SB, Hassandarvish P. Antibacterial Activity of Leaf Extracts of<i>Baeckea frutescens</i>against Methicillin-Resistant<i>Staphylococcus aureus</i>. Bio Medical Research International. 2014;2014:1–5. Available from: https://doi.org/10.1155/2014/521287
  12. Owaid MN. Green synthesis of silver nanoparticles by Pleurotus (oyster mushroom) and their bioactivity: Review. Environmental Nanotechnology, Monitoring & Management. 2019;12:100256. Available from: https://doi.org/10.1016/j.enmm.2019.100256
  13. Šebesta M, Vojtková H, Cyprichová V, Ingle AP, Urík M, Kolenčík M. Mycosynthesis of Metal-Containing Nanoparticles—Synthesis by Ascomycetes and Basidiomycetes and Their Application. International Journal of Molecular Sciences. 2023;24(1):304. Available from: https://doi.org/10.3390/ijms24010304
  14. Anthony KJP, Murugan M, Jeyaraj M, Rathinam NK, Sangiliyandi G. Synthesis of silver nanoparticles using pine mushroom extract: A potential antimicrobial agent against E. coli and B. subtilis. Journal of Industrial and Engineering Chemistry. 2014;20(4):2325–2331. Available from: https://doi.org/10.1016/j.jiec.2013.10.008
  15. Kim M, Lee JH, Nam JM. Plasmonic Photothermal Nanoparticles for Biomedical Applications. Advanced Science. 2019;6(17):1900471. Available from: https://doi.org/10.1002/ADVS.201900471
  16. Noor S, Shah Z, Javed A, Ali A, Hussain SB, Zafar S, et al. A fungal based synthesis method for copper nanoparticles with the determination of anticancer, antidiabetic and antibacterial activities. Journal of Microbiological Methods. 2020;174:105966. Available from: https://doi.org/10.1016/j.mimet.2020.105966
  17. El-Khawaga AM, Farrag AA, Elsayed MA, El-Sayyad GS, El-Batal AI. Promising Antimicrobial and Azo Dye Removal Activities of Citric Acid-Functionalized Magnesium Ferrite Nanoparticles. J Clust Sci. 2022;33:197–213. Available from: https://doi.org/10.1007/s10876-020-01944-y
  18. Ermini ML, Voliani V. Antimicrobial Nano-Agents: The Copper Age. ACS Nano. 2021;15(4):6008–6029. Available from: https://doi.org/10.1021/acsnano.0c10756
  19. Kumar A, Pandey G. A Review on the Factors Affecting the Photocatalytic Degradation of Hazardous Materials. Material Science & Engineering International Journal. 2017;1(3). Available from: https://doi.org/10.15406/MSEIJ.2017.01.00018
  20. Raina S, Roy A, Bharadvaja N. Degradation of dyes using biologically synthesized silver and copper nanoparticles. Environmental Nanotechnology, Monitoring & Management. 2020;13:100278. Available from: https://doi.org/10.1016/j.enmm.2019.100278
  21. Siddiqi KS, Rashid M, Rahman A, Tajuddin, Husen A, Rehman S. Green synthesis, characterization, antibacterial and photocatalytic activity of black cupric oxide nanoparticles. Agriculture & Food Security. 2020;9(1):1–15. Available from: https://doi.org/10.1186/s40066-020-00271-9
  22. Aroob S, Carabineiro SAC, Taj MB, Bibi I, Raheel A, Javed T, et al. Green Synthesis and Photocatalytic Dye Degradation Activity of CuO Nanoparticles. Catalysts. 13(3):502. Available from: https://doi.org/10.3390/CATAL13030502

Copyright

© 2023 Amirtham et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)

DON'T MISS OUT!

Subscribe now for latest articles and news.