• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2023, Volume: 16, Issue: 19, Pages: 1422-1430

Original Article

Plane Wave Problem in a Generalized Thermo-elastic Solid in the Presence of Voids

Received Date:27 January 2023, Accepted Date:11 April 2023, Published Date:12 May 2023


Objective: To investigate the effect of voids on the propagation of plane waves in a generalized thermo-elastic solid. Method: The method of plane harmonic solution is employed to solve the basic equations of generalized thermo-elastic void solids. Findings: Under the effect of voids and non-voids, three sets of longitudinal waves are derived, and they are not appeared in any classical theory of elasticity. But one transverse wave is derived and these results are coinciding with the theory of classical elasticity. Novelty: Under the MATLAB programme the speed of longitudinal waves are shown in the frequency relation. Longitudinal waves are propagating with high speed in nonthermal voids solids.

Keywords: Thermoelasticity; Voids; Plane Harmonic Solution; Plane Longitudinal Waves; Plane Transverse Waves


  1. Cicco SD, Angelis FD. A plane strain problem in the theory of elastic materials with voids. Mathematics and Mechanics of Solids. 2020;25(1):46–59. Available from: https://doi.org/10.1177/1081286519867109
  2. Iesan D. A theory of thermoelastic materials with voids. Acta Mechanica. 1986;60(1-2):67–89. Available from: https://doi.org/10.1007/BF01302942
  3. Marin M, Öchsner A, Vlase S. Effect of voids in a heat-flux dependent theory for thermo elastic bodies with dipolar structure. Carpathian Journal of Mathematics. 2020;36(3):463–474. Available from: https://www.jstor.org/stable/26932588
  4. Singh SS, Tochhawng L. Stoneley and Rayleigh waves in thermoelastic materials with voids. Journal of Vibration and Control. 2019;25(14):2053–2062. Available from: https://doi.org/10.1177/1077546319847850
  5. Ciarletta M, Scarpetta E. Some Results on Thermoelasticity for Dielectric Materials with Voids. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik. 1995;75(9):707–714. Available from: https://doi.org/10.1002/zamm.19950750912
  6. Tomar SK, Goyal N, Szekeres A. Plane Waves in Thermo-Viscoelastic Material with Voids Under Different Theories of Thermoelasticity. International Journal of Applied Mechanics and Engineering. 2019;24(3):691–708. Available from: https://doi.org/10.2478/ijame-2019-0043
  7. Tomar SK, Kumar S. Wave propagation in elastic–plastic material with voids. Journal of Applied Physics. 2020;127(5):054901. Available from: https://doi.org/10.1063/1.5127903
  8. Ciarletta M, Stranghan B, Zampoli V. Thermo Poroacoustic Acceleration Waves in Elastic Materials with Voids without Energy dissipation”. International Journal of Engineering Science. 2007;45(9):736–743. Available from: https://doi.org/10.1016/j.ijengsci.2007.05.001
  9. Chandrasekharaiah DS. Effects of Surface stresses and Voids on Rayleigh waves in an elastic solid. International Journal of Engineering Science. 1987;25:90006–90007. Available from: https://doi.org/10.1016/0020-7225(87)90006-1
  10. Tomar SK, A. Propagating waves in Elastic Materials with Voids Subjected Electro-magnetic interaction. Applied Mathematical Modelling. 2020;78:685–705. Available from: https://doi.org/10.1016/j.apm.2019.10.029
  11. Aoudai M. A theory of thermoelastic diffusion materials with voids. Zeitschrift für angewandte Mathematik und Physik. 2010;61(2):357–379.
  12. Somaiah K, Kumar AR. Investigation of plane longitudinal waves in a micro-isotropic, micro-elastic solid. Journal of Mathematical and Computational Science. 2021;11(1):380–391. Available from: https://doi.org/10.28919/jmcs/5124
  13. Lord HW, Shulman Y. A generalized dynamical theory of thermoelasticity. Journal of the Mechanics and Physics of Solids. 1967;15(5):299–309. Available from: https://doi.org/10.1016/0022-5096(67)90024-5
  14. Achenbach JD, Thau SA. Wave Propagation in Elastic Solids. Journal of Applied Mechanics. 1974;41(2):544.
  15. Dhaliwal RS, Singh. Dynamic Coupled Thermo elasticity. (pp. 726) New Delhi, India. Hindustan Publishing Corporation. 1980.


© 2023 Rao et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee


Subscribe now for latest articles and news.