• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2021, Volume: 14, Issue: 31, Pages: 2579-2589

Original Article

Polymer nanocomposites comprising PVA matrix and AgGaO2 nanofillers: Probing the effect of intercalation on optical and dielectric response for optoelectronic applications

Received Date:29 August 2021, Accepted Date:07 September 2021, Published Date:22 September 2021


Objectives: Synthesis of hybrid nanoparticles (NPs) and intercalation of as prepared NPs inside polymer matrix to fabricate polymer nanocomposites (NC) and evaluate the optoelectronic properties. Method: A simple, time consuming solution combustion method was used to synthesize silver doped gallium oxide (AgGaO2) NPs. The solution casting process was employed to prepare NC films of poly(vinyl alcohol) (PVA) with the inclusion of AgGaO2 NPs as nanofiller. Finding: The analytical technique such as Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy and differential scanning calorimetry analyses were used to analyze the PVA/AgGaO2 NC films. The findings of various characterization approaches showed that the morphological, structural and thermal characteristics of PVA/AgGaO2 NC films had improved, as well as confirms the existence of AgGaO2 NPs in the PVA matrix. Furthermore, the dielectric characteristics of the PVA/AgGaO2 NC films were studied using an LCR meter at various frequencies (50 Hz–1 MHz). With intercalating four different wt% of AgGaO2 NPs content as 0.5, 1, 2 and 4 wt% the dielectric constant and dielectric loss of NC films with 4 wt % AgGaO2 NPs incorporated were 112.1 and 51.5 respectively. Novelty: This improvement in dielectric characteristics revealed the uniform distribution and effective interaction of AgGaO2 NPs with the active site of PVA chains. The preceding findings demonstrated that the obtained PVA NCs were promising materials for flexible energy storage and UV-shielding applications.

Keywords: Hybrid metal oxides; Dielectric constant and dielectric loss; AC conductivity; Optical energy band gap


  1. Xie X, Yang C, Qi Xd, Yang Jh, Zhou Zw, Wang Y. Constructing polymeric interlayer with dual effects toward high dielectric constant and low dielectric loss. Chemical Engineering Journal. 2019;366:378–389. Available from: https://dx.doi.org/10.1016/j.cej.2019.02.106
  2. Gong X, Tang CY, Pan L, Hao Z, Tsui CP. Characterization of poly(vinyl alcohol) (PVA)/ZnO nanocomposites prepared by a one-pot method. Composites Part B: Engineering. 2014;60:144–149. Available from: https://dx.doi.org/10.1016/j.compositesb.2013.12.045
  3. Muzaffar A, Ahamed MB, Deshmukh K, Faisal M, Pasha SKK. Enhanced electromagnetic absorption in NiO and BaTiO3 based polyvinylidenefluoride nanocomposites. Materials Letters. 2018;218:217–220. Available from: https://dx.doi.org/10.1016/j.matlet.2018.02.029
  4. Somesh TE, Al-Gunaid MQA, Madhukar BS, Siddaramaiah. Photosensitization of optical band gap modified polyvinyl alcohol films with hybrid AgAlO2 nanoparticles. Journal of Materials Science: Materials in Electronics. 2019;30(1):37–49. Available from: https://dx.doi.org/10.1007/s10854-018-0226-3
  5. Al-Gunaid MQA, Saeed AMN, Subramani NK, Madhukar BS, Siddaramaiah. Optical parameters, electrical permittivity and I–V characteristics of PVA/Cs2CuO2 nanocomposite films for opto-electronic applications. Journal of Materials Science: Materials in Electronics. 2017;28(11):8074–8086. Available from: https://dx.doi.org/10.1007/s10854-017-6513-6
  6. Sheha E, Khoder H, Shanap TS, El-Shaarawy MG, Mansy MKE. Structure, dielectric and optical properties of p-type (PVA/CuI) nanocomposite polymer electrolyte for photovoltaic cells. Optik. 2012;123(13):1161–1166. Available from: https://dx.doi.org/10.1016/j.ijleo.2011.06.066
  7. Zade VB, Rajkumar MR, Broner R, Ramana CV. Chemical composition tuning induced variable and enhanced dielectric properties of polycrystalline Ga 2‐2 x W x O 3 ceramics. Engineering Reports. 2021;3(1):e12300. doi: 10.1002/eng2.12300
  8. Manzoor K, Vadera SR, Kumar N, Kutty TRN. Multicolor electroluminescent devices using doped ZnS nanocrystals. Applied Physics Letters. 2004;84(2):284–286. Available from: https://dx.doi.org/10.1063/1.1639935
  9. Pathak CS, Mandal MK, Agarwala V. Synthesis and characterization of zinc sulphide nanoparticles prepared by mechanochemical route. Superlattices and Microstructures. 2013;58:135–143. Available from: https://dx.doi.org/10.1016/j.spmi.2013.03.011
  10. Salama AH, Youssef AM, Rammah YS, El-Khatib M. YBCO as a transition metal oxide ceramic material for energy storage. Bulletin of the National Research Centre. 2019;43(1):1. Available from: https://dx.doi.org/10.1186/s42269-019-0134-6
  11. Yin L, Wang D, Huang J, Cao L, Ouyang H, Yong X. Morphology-controllable synthesis and enhanced photocatalytic activity of ZnS nanoparticles. Journal of Alloys and Compounds. 2016;664:476–480. Available from: https://dx.doi.org/10.1016/j.jallcom.2015.10.281
  12. Porta FAL, Ferrer MM, Santana YVBd, Raubach CW, Longo VM, Sambrano JR, et al. Synthesis of wurtzite ZnS nanoparticles using the microwave assisted solvothermal method. Journal of Alloys and Compounds. 2013;556:153–159. Available from: https://dx.doi.org/10.1016/j.jallcom.2012.12.081
  13. Ahsan HM, Lal K, Saleem M, Mustafa GM, Khan MA, Haidyrah AS, et al. Tuning the dielectric behavior and energy storage properties of Mn/Co co-doped ZnO. Materials Science in Semiconductor Processing. 2021;134:105977. Available from: https://dx.doi.org/10.1016/j.mssp.2021.105977
  14. Chandrasekar LB, Chandramohan R, Vijayalakshmi R, Chandrasekaran S. Preparation and characterization of Mn-doped ZnS nanoparticles. International Nano Letters. 2015;5(2):71–75. Available from: https://dx.doi.org/10.1007/s40089-015-0139-6
  15. Prasad K, Jha AK. Biosynthesis of CdS nanoparticles: An improved green and rapid procedure. Journal of Colloid and Interface Science. 2010;342(1):68–72. Available from: https://dx.doi.org/10.1016/j.jcis.2009.10.003
  16. Pasha K, Lakshmipathy R, Sarada NC, Chidambaram K. One-step, low-temperature fabrication of CdS quantum dots by watermelon rind: a green approach. International Journal of Nanomedicine. 2015;10(1):183. Available from: https://dx.doi.org/10.2147/ijn.s79988
  17. Reddy AJ, Kokila MK, Nagabhushana H, Rao JL, Shivakumara C, Nagabhushana BM, et al. Combustion synthesis, characterization and Raman studies of ZnO nanopowders. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2011;81(1):53–58. Available from: https://dx.doi.org/10.1016/j.saa.2011.05.043
  18. Deganello F, Tyagi AK. Solution combustion synthesis, energy and environment: Best parameters for better materials. Progress in Crystal Growth and Characterization of Materials. 2018;64:23–61. Available from: https://dx.doi.org/10.1016/j.pcrysgrow.2018.03.001
  19. Aruna ST, Mukasyan AS. Combustion synthesis and nanomaterials. Current Opinion in Solid State and Materials Science. 2008;12:44–50. Available from: https://dx.doi.org/10.1016/j.cossms.2008.12.002
  20. Al-Gunaid MQA, T.E S, H.M G, Al-Ostoot FH, Basavarajaiah S. Optimized nano-perovskite lanthanum cuprate decorated PVA based solid polymer electrolyte. Polymer-Plastics Technology and Materials. 2020;59:215–229. Available from: https://dx.doi.org/10.1080/25740881.2019.1634729
  21. Nguyen TP, Le AD, Vu TB, Lam QV. Investigations on photoluminescence enhancement of poly(vinyl alcohol)-encapsulated Mn-doped ZnS quantum dots. Journal of Luminescence. 2017;192:166–172. Available from: https://dx.doi.org/10.1016/j.jlumin.2017.06.031
  22. Chandrakala HN, Ramaraj B, Shivakumaraiah, Madhu GM, Siddaramaiah. Preparation of Polyvinyl Alcohol–Lithium Zirconate Nanocomposite Films and Analysis of Transmission, Absorption, Emission Features, and Electrical Properties. The Journal of Physical Chemistry C. 2013;117(9):4771–4781. Available from: https://dx.doi.org/10.1021/jp311828n
  23. Ouyang S, Kikugawa N, Chen D, Zou Z, Ye J. A Systematical Study on Photocatalytic Properties of AgMO2 (M = Al, Ga, In): Effects of Chemical Compositions, Crystal Structures, and Electronic Structures. The Journal of Physical Chemistry C. 2009;113(4):1560–1566. Available from: https://dx.doi.org/10.1021/jp806513t
  24. Samir MASA, Alloin F, Gorecki W, Sanchez JY, Dufresne A. Nanocomposite Polymer Electrolytes Based on Poly(oxyethylene) and Cellulose Nanocrystals. The Journal of Physical Chemistry B. 2004;108(30):10845–10852. Available from: https://dx.doi.org/10.1021/jp0494483
  25. Chiodelli G, Ferloni P, Magistris A, Sanesim. Ionic conduction and thermal properties of poly (ethylene oxide)-lithium tetrafluoroborate films. Solid State Ionics. 1988;(90321) 28–30. doi: 10.1016/0167-2738(88)90321-9
  26. Varaprasad HS, Sridevi PV, Anuradha MS. Optical, morphological, electrical properties of ZnO-TiO2-SnO2/CeO2 semiconducting ternary nanocomposite. Advanced Powder Technology. 2021;32:1472–1480. Available from: https://dx.doi.org/10.1016/j.apt.2021.02.042
  27. Tantis I, Psarras GC, Tasis D. Functionalized graphene – poly(vinyl alcohol) nanocomposites: Physical and dielectric properties. Express Polymer Letters. 2012;6:283–292. Available from: https://dx.doi.org/10.3144/expresspolymlett.2012.31
  28. Murugaraj P, Mainwaring D, Mora-Huertas N. Dielectric enhancement in polymer-nanoparticle composites through interphase polarizability. Journal of Applied Physics. 2005;98(5):054304. Available from: https://dx.doi.org/10.1063/1.2034654
  29. Venkateswarlu M, Knarasimha R, Rambabu B, Satyanarayana N. A.c. conductivity and dielectric studies of silver-based fast ion conducting glass system. Solid State Ionics. 2000;127(1-2):177–184. doi: 10.1016/S0167-2738(99)00257-X
  30. Radoń A, Hawełek Ł, Łukowiec D, Kubacki J, Włodarczyk P. Dielectric and electromagnetic interference shielding properties of high entropy (Zn,Fe,Ni,Mg,Cd)Fe2O4 ferrite. Scientific Reports. 2019;9(1):1–3. Available from: https://dx.doi.org/10.1038/s41598-019-56586-6
  31. Huan CHW, Chuhyung W, Chein HC, Yao-Hui. The effect of different lithium salts on conductivity of comb-like polymer electrolyte with chelating functional group. Electrochimica acta. 2003;48:679–690. doi: 10.1016/S0013-4686(02)00737-5
  32. Ravi M, Pavani Y, Kumar KK, Bhavani S, Sharma AK, Rao VVRN. Studies on electrical and dielectric properties of PVP:KBrO4 complexed polymer electrolyte films. Materials Chemistry and Physics. 2011;130(1-2):442–448. Available from: https://dx.doi.org/10.1016/j.matchemphys.2011.07.006
  33. Ibrahim S, Ahmad R, Johan MR. Conductivity and optical studies of plasticized solid polymer electrolytes doped with carbon nanotube. Journal of Luminescence. 2012;132(1):147–152. Available from: https://dx.doi.org/10.1016/j.jlumin.2011.08.004
  34. Praveena SD, Ravindrachary V, Ismayil RFB. Dopant-induced microstructural, optical, and electrical properties of TiO2 /PVA composite. Polymer Composites. 2016;37(4):987–997. doi: 10.1002/pc.23258
  35. An N, Zhuang B, Li M, Lu Y, Wang ZG. Combined Theoretical and Experimental Study of Refractive Indices of Water–Acetonitrile–Salt Systems. The Journal of Physical Chemistry B. 2015;119(33):10701–10709. Available from: https://dx.doi.org/10.1021/acs.jpcb.5b05433
  36. Khalil KD, Bashal AH, Khalafalla M, Zaki AA. Synthesis, structural, dielectric and optical properties of chitosan-MgO nanocomposite. Journal of Taibah University for Science. 2020;14(1):975–983. Available from: https://dx.doi.org/10.1080/16583655.2020.1792117
  37. Saeed AMN, Hezam A, Al-Gunaid MQA, T.E S, Siddaramaiah. Effect of ethylene carbonate on properties of PVP-CsAlO2-LiClO4 solid polymer electrolytes. Polymer-Plastics Technology and Materials. 2021;60:132–146. Available from: https://dx.doi.org/10.1080/25740881.2020.1793191


© 2021 Somesh et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.