• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2024, Volume: 17, Issue: 12, Pages: 1159-1166

Original Article

Progression of COVID-19 Cases in Telangana State by using ARIMA, MLP, ELM and LSTM Prediction Models by Retrospective Confirmation

Received Date:28 January 2024, Accepted Date:23 February 2024, Published Date:14 March 2024


Objective: The importance of this research article is to evaluate efficient model for diagnosing pandemic COVID-19 positive cases in Telangana State, India. Method: Neural Network models (Extreme Learning Machine and Multi-Layer Perception), Deep Learning Neural Network model (Long Short Term Memory-LSTM) and traditional Auto Regressive Integrated Moving Average (ARIMA) models were applied and the data was converted from non-linear to linear (stationarity) for forecasting Covid-19 positive cases. The study of the data covered from 1st. Dec 2020 to 30th May 2021. 80% of train data was taken to fit the models and then 20% of the test data was used to predict the values. The deviation between original test data and predicted data led to an error. Among these error values, the model which had minimum errors was considered as the best of the four models. Findings: LSTM model was proved to be the most efficient model, as a result of the least Root mean square error (RMSE = 71.12) compared to ARIMA (258.20), ELM (553.67) and MLP (641.86) values. Novelty: These forecasting methods succour to predict the Covid-19 positive cases in the forthcoming days. This has been suggested for taking the better preventive steps to control the Covid-19 positive cases.

Keywords: COVID­19, ARIMA, LSTM, MLP, ELM Forecasting


  1. Chang TY, Huang CK, CHW, Chen JY, . Feature-based deep neural network approach for predicting mortality risk in patients with COVID-19. Engineering Applications of Artificial Intelligence. 2023;124:1–11. Available from: https://doi.org/10.1016/j.engappai.2023.106644
  2. Ozturk T, Talo M, Yildirim EA, Baloglu UB, Yildirim OR, Acharya UR. Automated detection of COVID-19 cases using deep neural networks with X-ray images. Computers in Biology and Medicine. 2020;121:1–11. Available from: https://doi.org/10.1016/j.compbiomed.2020.103792
  3. Alali Y, Harrou F, Sun Y. A proficient approach to forecast COVID-19 spread via optimized dynamic machine learning models. Scientific Reports. 2022;12(1):1–20. Available from: https://doi.org/10.1038/s41598-022-06218-3
  4. Wang Y, Yan Z, Wang D, Yang M, Li Z, Gong X, et al. Prediction and analysis of COVID-19 daily new cases and cumulative cases: times series forecasting and machine learning models. BMC Infectious Diseases. 2022;22(1):1–12. Available from: https://doi.org/10.1186/s12879-022-07472-6
  5. Jin YC, Cao Q, Wang KN, Zhou Y, Cao YP, Wang XY. Prediction of COVID-19 Data Using Improved ARIMA-LSTM Hybrid Forecast Models. IEEE Access. 2023;11:67956–67967. Available from: https://doi.org/10.1109/ACCESS.2023.3291999
  6. Zhao D, Zhang R, Zhang H, He S. Prediction of global omicron pandemic using ARIMA, MLR, and Prophet models. Scientific Reports. 2022;12(1):1–13. Available from: https://doi.org/10.1038/s41598-022-23154-4
  7. Hasan I, Dhawan P, Rizvi SAM, Dhir S. Data analytics and knowledge management approach for COVID-19 prediction and control. International Journal of Information Technology. 2023;15(2):937–954. Available from: https://doi.org/10.1007/s41870-022-00967-0
  8. Semwal J, Bahuguna A, Uniyal A, Vyas S. A Study to Analyse Covid-19 Outbreak Using Multiple Linear Regression: A Supervised Machine Learning Approach. National Journal of Community Medicine. 2023;14(02):82–89. Available from: https://doi.org/10.55489/njcm.140220232656
  9. Kumar RP, Rithesh A, Josh P, Raj B, John V, Prasad DS. Sleep Track: Automated Detection and Classification of Sleep Stages. In: 15th International Conference on Materials Processing and Characterization (ICMPC 2023). (Vol. 430, pp. 1-13) 2023.
  10. Bhattamisra SK, Banerjee P, Gupta P, Mayuren J, Patra S, Candasamy M. Artificial Intelligence in Pharmaceutical and Healthcare Research. Big Data and Cognitive Computing. 2023;7(1):1–20. Available from: https://doi.org/10.3390/bdcc7010010
  11. Khoojine AS, Shadabfar M, Vahid R, Hosseini H, Kordestani. Network Autoregressive Model for the Prediction of COVID-19 Considering the Disease Interaction in Neighboring Countries. Entropy. 2021;23(10):1–18. Available from: https://doi.org/10.3390/e23101267
  12. Shetty RP, Pai PS. Forecasting of COVID 19 Cases in Karnataka State using Artificial Neural Network (ANN) Journal of The Institution of Engineers (India): Series B. 2021;102:1201–1211. Available from: https://doi.org/10.1007/s40031-021-00623-4
  13. Oshinubi K, Amakor A, Peter OJ, Rachdi M, Demongeot J. Approach to COVID-19 time series data using deep learning and spectral analysis methods. AIMS Bioengineering. 2022;9(1):1–21. Available from: https://doi.org/10.3934/bioeng.2022001
  14. Zheng N, Du S, Wang J, Zhang H, Cui W, Kang Z, et al. Predicting COVID-19 in China Using Hybrid AI Model. IEEE Transactions on Cybernetics. 2020;50(7):2891–2904. Available from: https://doi.org/10.1109/TCYB.2020.2990162
  15. Tuli S, Tuli S, Tuli R, Gill SS. Predicting the growth and trend of COVID-19 pandemic using machine learning and cloud computing. Internet of Things. 2020;11:1–16. Available from: https://doi.org/10.1016/j.iot.2020.100222
  16. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497–506. Available from: https://doi.org/10.1016/s0140-6736(20)30183-5
  17. Benvenuto D, Giovanetti M, Vassallo L, Angeletti S, Ciccozzi M. Application of the ARIMA model on the COVID-2019 epidemic dataset. Data in Brief. 2020;29:1–4. Available from: https://doi.org/10.1016/j.dib.2020.105340
  18. Rath S, Tripathy A, Tripathy AR. Prediction of new active cases of coronavirus disease (COVID-19) pandemic using multiple linear regression model. Diabetes & Metabolic Syndrome: Clinical Research & Reviews. 2020;14(5):1467–1474. Available from: https://doi.org/10.1016/j.dsx.2020.07.045
  19. Alassafi MO, Jarrah M, Alotaibi R. Time series predicting of COVID-19 based on deep learning. Neurocomputing. 2022;468:335–344. Available from: https://doi.org/10.1016/j.neucom.2021.10.035
  20. Shams MY, Elzeki OM, Abouelmagd LM, Hassanien AE, Elfattah MA, Salem H. HANA: A Healthy Artificial Nutrition Analysis model during COVID-19 pandemic. Computers in Biology and Medicine. 2021;135:1–16. Available from: https://doi.org/10.1016/j.compbiomed.2021.104606
  21. Yadav M, Perumal M, Srinivas M. Analysis on novel coronavirus (COVID-19) using machine learning methods. Chaos, Solitons & Fractals. 2020;139:1–12. Available from: https://doi.org/10.1016/j.chaos.2020.110050
  22. Khan FM, Gupta R. ARIMA and NAR based prediction model for time series analysis of COVID-19 cases in India. Journal of Safety Science and Resilience. 2020;1(1):12–18. Available from: https://doi.org/10.1016/j.jnlssr.2020.06.007
  23. Chimmula VKR, Zhang L. Time series forecasting of COVID-19 transmission in Canada using LSTM networks. Chaos, Solitons & Fractals. 2020;135:1–6. Available from: https://doi.org/10.1016/j.chaos.2020.109864


© 2024 Rajendar et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.