• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2023, Volume: 16, Issue: 27, Pages: 2090-2101

Original Article

Radial Basis Function Based Partition of Unity Method for Two-Dimensional Unsteady Convection Diffusion Equations

Received Date:09 June 2023, Accepted Date:17 June 2023, Published Date:20 July 2023


Objective: The present method aims to solve and investigate the efficiency, accuracy, and stability of the 2D unsteady Navier-Stokes equation in stream function vorticity formulation and Taylor’s vortex problem. Method: RBF partition of unity method (RBF-PUM) was implemented to solve the twodimensional Navier- Stokes equations in stream function vorticity formulation and Taylor’s vortex problem. Findings: RBF-PUM results show good agreement with the exact solutions. The numerical approach is found to be efficient and accurate while maintaining stability even for a Reynolds number as high as 1000. The global RBF method’s high computational cost can be overcome by using the RBF-PUM. Novelty and applications: The RBF-PU methodology is extended to solve the two-dimensional Navier- Stokes equations in stream function vorticity formulation and Taylor’s vortex problem, which were not discussed earlier in the literature. The adaptive spatial refinement within the partitions may be performed independently using the RBF-PUM. Then it may be extended to the more complex problems in CFD.

Keywords: Mesh Free Methods; RBF- PUM; Navier- Stokes Equations; Taylor’s Vortex Problem; CFD


  1. Jeong SM, Lee CY. Weighted Moving Square-Based Solver for. Unsteady Incompressible Laminar Flow Simulations. Applied Sciences. 2022;12(7):3519. Available from: https://doi.org/10.3390/app12073519
  2. Sheikhi N, Najafi M, Enjilela V. Extending the Meshless Local Petrov–Galerkin Method to Solve Stabilized Turbulent Fluid Flow Problems. International Journal of Computational Methods. 2019;16(01). Available from: https://doi.org/10.1142/S021987621850086X
  3. Sanyasiraju YVSS, Satyanarayana C. On optimization of the RBF shape parameter in a grid-free local scheme for convection dominated problems over non-uniform centers. Applied Mathematical Modelling. 2013;37(12-13):7245–7272. Available from: https://doi.org/10.1016/j.apm.2013.01.054
  4. Schoder S, Roppert K, Weitz M, Junger C, Kaltenbacher M. Aeroacoustic source term computation based on radial basis functions. 2020. Available from: https://doi.org/10.1002/nme.6298
  5. Ben-Ahmed EH, Sadik M, Wakrim M. Radial basis function partition of unity method for modelling water flow in porous media. Computers & Mathematics with Applications. 2018;75(8):2925–2941. Available from: https://doi.org/10.1016/j.camwa.2018.01.022
  6. Fasshauer GE. Meshfree Approximation Methods with Matlab. World Scientific. 2007;6:491. Available from: https://doi.org/10.1142/6437
  7. Safdari-Vaighani A, Heryudono A, Larsson E. A radial basis function partition of unity collocation method for convection-diffusion equations. Journal of Scientific Computing. 2015;64:341–367. Available from: https://doi.org/10.1016/j.cam.2017.01.024
  8. Garmanjani G, Cavoretto R, Esmaeilbeigi M. A RBF partition of unity collocation method based on finite difference for initial–boundary value problems. Computers & Mathematics with Applications. 2018;75(11):4066–4090. Available from: http://doi.org/10.1016/j.camwa.2018.03.014
  9. Balmus M, Hoffman J, Massing A, Nordsletten DA. A stabilized multidomain partition of unity approach to solving incompressible viscous flow. Computer Methods in Applied Mechanics and Engineering. 2022;392(2):114656. Available from: https://doi.org/10.1016/j.cma.2022.114656


© 2023 Veni et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.