• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2020, Volume: 13, Issue: 13, Pages: 1367-1379

Original Article

Rice yield prediction and optimization using association rules and neural network methods to enhance agribusiness

Received Date:31 March 2020, Accepted Date:16 April 2020, Published Date:16 May 2020


Objectives: This study aims to implement data analytics and machine learning approaches to rice data and to establish association rules on fixed attributes and their correlations for yield prediction of crops. Methods: The data of rice crop is collected from district Larkana as per defined parameters: area, production, yield, temperature, rainfall, humidity and wind speed. The pre-processing operations are applied on prepared dataset to execute data analytics and machine learning algorithms. The processed data are then input into an Apriori algorithm for generating association rules. Neural network model is used to perform optimization on resulted association rules. Findings: Minimum support and confidence values equal to 3 and 80 respectively were set using Apriori algorithm on prepared rice dataset and obtained 88 association rules. Among them, results of 28 associated rules predicted `High Yield Production'. Neural network model is experimented to optimize the predicted yield of district Larkana through which overall network performance of 97.8% is calculated. Previously, rice yield data of Larkana were not statistically and digitally predicted and investigated. Application: Group of effective and well-built association rules of yield prediction are core outcome of this study which will be helpful for researchers, farmers and government officials to improve the productivity of rice crop.

Keywords: Rice data sets; Association rules; Yield prediction; Data optimization; Neural network


  1. Sellam V, Poovammal E. Prediction of Crop Yield using Regression Analysis. Indian Journal of Science and Technology. 2016;9(38):1–5. doi: 10.17485/ijst/2016/v9i38/91714
  2. Park JK, Das A, Park JH. Integrated Model for Predicting Rice Yield with Climate Change. International Agrophysics. 2018;32:203–215.
  3. SUPRO IA, MAHAR JA, MAITLO A. Regression Analysis of Rice Data for Yield Prediction Using Python Programming Language. SINDH UNIVERSITY RESEARCH JOURNAL -SCIENCE SERIES. 2019;51(02):183–188. doi: 10.26692/sujo/2019.6.32
  4. Surya P, Aroquiaraj IL, Kumar A. The Role of Big Data Analytics in Agriculture Sector: A Survey. International Journal of Advanced Research in Biology Engineering Science and Technology. 2016;2:830–838.
  5. Rao PR, Gowda SP, Prathibha RJ. Paddy Yield Predictor Using Temperature, Rainfall, Soil pH, and Nitrogen. Emerging Research in Electronics. Lecture Notes in Electrical Engineering 545. 2019;p. 245–253.
  6. Ramakrishna BV, Satyanarayana B. Agriculture Soil Test Report Data Mining for Cultivation Advisory. International Journal of Computer Application. 2016;6(2):11–16.
  7. Supriya DM. Analysis of Soil Behavior and Prediction of Crop Yield using Data Mining Approach. International Journal of Innovative Research in Computer and Communication Engineering. 2017;5(5).
  8. Zingade DS, Buchade O, Mehta N, Ghodekar S, Mehta C. Crop Prediction System using Machine Learning. International Journal of Advance Engineering and Research Development. 2017;4(5):1–6.
  9. Chouhan S, Singh D, Singh A. A Survey and Analysis of Various Agricultural Crops Classification Techniques. International Journal of Computer Applications. 2016;136(11):25–30. doi: 10.5120/ijca2016908575
  10. Paswan RP, Begum SA. Regression and Neural Networks Models for Prediction of Crop Production. International Journal of Scientific & Engineering Research. 2013;4(9):98–108.
  11. Pandey A, Mishra A. Application of artificial neural networks in yield prediction of potato crop. Russian Agricultural Sciences. 2017;43(3):266–272. doi: 10.3103/s1068367417030028
  12. Khaki S, Wang L. Crop Yield Prediction Using Deep Neural Networks. Frontiers in Plant Science. 2019;10(621). doi: 10.3389/fpls.2019.00621
  13. Gandhi N, Petkar O, Armstrong LJ. 2016.
  14. Khaki S, Wang L, Archontoulis SV. A CNN-RNN Framework for Crop Yield Prediction. Frontiers in Plant Science. 2020;10. doi: 10.3389/fpls.2019.01750
  15. Putri RE, Yahya A, Adam NM, Aziz A, S. Rice Yield Prediction with Respect to Crop Healthiness and Soil Fertility. Food Research. 2018;3(2).
  16. Kuldeep S, Sunila, Sanjeev K. Crop Yield Prediction Techniques Using Remote Sensing Data. International Journal of Engineering and Advanced Technology. 2020;9(3):3683–3689.


Copyright: © 2020 Supro, Mahar, Mahar. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.