• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology

Article

Indian Journal of Science and Technology

Year: 2021, Volume: 14, Issue: 21, Pages: 1791-1805

Original Article

Slow Pyrolyzed Banana Leaf Waste Biochar Amended Calcareous Soil Properties and Maize Growth

Received Date:13 December 2020, Accepted Date:27 January 2021, Published Date:19 June 2021

Abstract

Background/objectives: Biochar has gained tremendous potential for mitigation of climate change and improving soil quality and productivity. This study aimed to develop biochar from banana leaves and evaluate its effect on soil properties and maize yield. Methods: Banana leaf-based biochar, prepared through slow pyrolysis (300-400 oC), was tested on maize crop in pot experiment using three biochar rates (B0 = 0 t ha-1, B1 = 20 t ha-1 and B2 = 40 t ha-1) along with a compost control (Bc = 5 t compost ha-1) and three chemical fertilizer (CF) rates (F0 = 0–Control, F1 = 120 kg N ha-1 and F2 = 120-90 kg NP ha-1) based on completely randomized design with three replications. Findings: The addition of banana leaf based amendments (BLBA) significantly improved soil properties except soil pH and EC. The application of higher biochar rate (40 t ha-1) revealed maximum soil CEC (23.65 cmolc kg-1), TOC (1.48%), TN (0.12%) and K (89.31 mg kg-1) while maximum P concentration (4.26 and 4.04 mg kg-1) was noted in NP and compost applied treatments. Likewise, higher biological (231.00 g pot-1) and grain yield (104.81 g pot-1) as noted in compost treatment, were at par with biochar rates of 20 and 40 t ha-1 which were due to improvement in nutrient uptake. Overall, higher rate of biochar (40 t ha-1) performed better over lower rate (20 t ha-1) and compost (5 t ha-1) in buildup of nutrients and improvement in soil properties. Applications/improvements: Therefore, lower biochar rate and compost of banana leaf origin with chemical fertilizers can serve as an alternate for maize nutrition and improvement in soil fertility and quality So, it is suggested that BLBA may be tested under long term field experiments on different crops.

Keywords

Banana leaves, biochar, calcareous soil, maize, nutrients, slow pyrolysis, yield

References

  1. Zhang H, Tu YJ, Duan YP, Liu J, Zhi W, Tang Y. Production of biochar from waste sludge/leaf for fast and efficient removal of diclofenac. Journal of Molecular Liquids. 2020;299(112193).
  2. Gabhane JW, Bhange VP, Patil PD, Bankar ST, Kumar S. Recent trends in biochar production methods and its application as a soil health conditioner: a review. SN Applied Sciences. 2020;2(7):1307. Available from: https://dx.doi.org/10.1007/s42452-020-3121-5
  3. Tripathi M, Sahu JN, Ganesan P. Effect of process parameters on production of biochar from biomass waste through pyrolysis: A review. Renewable and Sustainable Energy Reviews. 2016;55:467–481. Available from: https://dx.doi.org/10.1016/j.rser.2015.10.122
  4. Coughlan MP. The Properties of Fungal and Bacterial Cellulases with Comment on their Production and Application. Biotechnology and Genetic Engineering Reviews. 1985;3(1):39–110. Available from: https://dx.doi.org/10.1080/02648725.1985.10647809
  5. Harmsen P, Huijgen W, Lopez L, Bakker R. Literature review of physical and chemical pretreatment processes for lignocellulosic biomass. Food Biobased Res. 2010;p. 1–49.
  6. Gabhane J, Tripathi A, Athar S, William SPMP, Vaidya AN, Wate SR. Assessment of Bioenergy Potential of Agricultural Wastes: A Case Study Cum Template. Journal of Biofuels and Bioenergy. 2016;2(2):122. Available from: https://dx.doi.org/10.5958/2454-8618.2016.00011.0
  7. Patle AV, Prince M, Williams SP, Gabhane J, Dhar H, Nagarnaik P. Mircobial assisted rapid composting of agriculture residues. Int J Sci Eng Res. 2014;5:1097–1099.
  8. Villaseñor J, Rodríguez L, Fernández FJ. Composting domestic sewage sludge with natural zeolites in a rotary drum reactor. Bioresource Technology. 2011;102(2):1447–1454. Available from: https://dx.doi.org/10.1016/j.biortech.2010.09.085
  9. Raut M, Princewilliam S, Bhattacharyya J, Chakrabarti T, Devotta S. Microbial dynamics and enzyme activities during rapid composting of municipal solid waste – A compost maturity analysis perspective. Bioresource Technology. 2008;99(14):6512–6519. Available from: https://dx.doi.org/10.1016/j.biortech.2007.11.030
  10. Gabhane J, William SP, Bidyadhar R, Bhilawe P, Anand D, Vaidya AN, et al. Additives aided composting of green waste: Effects on organic matter degradation, compost maturity, and quality of the finished compost. Bioresource Technology. 2012;114:382–388. Available from: https://dx.doi.org/10.1016/j.biortech.2012.02.040
  11. Lai WY, Lai CM, Ke GR, Chung RS, Chen CT, Cheng CH. The effects of woodchip biochar application on crop yield, carbon sequestration and greenhouse gas emissions from soils planted with rice or leaf beet. J Taiwan Inst Chem Eng. 2013;44:1039–1044. Available from: https://doi.org/10.1016/J.JTICE .2013.06.028
  12. Méndez A, Paz-Ferreiro J, Gil E, Gascó G. The effect of paper sludge and biochar addition on brown peat and coir based growing media properties. Scientia Horticulturae. 2015;193:225–230. Available from: https://dx.doi.org/10.1016/j.scienta.2015.07.032
  13. Verma M, Godbout S, Brar SK, Solomatnikova O, Lemay SP, Larouche JP. Biofuels Production from Biomass by Thermochemical Conversion Technologies. International Journal of Chemical Engineering. 2012;2012:1–18. Available from: https://dx.doi.org/10.1155/2012/542426
  14. Dai L, Fan L, Liu Y, Ruan R, Wang Y, Zhou Y, et al. Production of bio-oil and biochar from soapstock via microwave-assisted co-catalytic fast pyrolysis. Bioresour Technol. 2017;225:1–8. Available from: https://doi.org/10.1016/j.biortech.2016.11.017
  15. Huang YF, Chiueh PT, Kuan WH, Lo SL. Microwave pyrolysis of lignocellulosic biomass: Heating performance and reaction kinetics. Energy. 2016;100:137–144. Available from: https://dx.doi.org/10.1016/j.energy.2016.01.088
  16. Guan G, Kaewpanha M, Hao X, Abudula A. Catalytic steam reforming of biomass tar: Prospects and challenges. Renewable and Sustainable Energy Reviews. 2016;58:450–461. Available from: https://dx.doi.org/10.1016/j.rser.2015.12.316
  17. Turner J, Sverdrup G, Mann MK, Maness PC, Kroposki B, Ghirardi M, et al. Renewable hydrogen production. International Journal of Energy Research. 2008;32(5):379–407. Available from: https://dx.doi.org/10.1002/er.1372
  18. Bourgeois JP, Doat J. Torrefied wood from temperate and tropical species. In: Advantages and prospects. Bioenergy 84. (Vol. III, pp. 153-159) 1984.
  19. Pentananunt R, Rahman ANMM, Bhattacharya SC. Upgrading of biomass by means of torrefaction. Energy. 1990;15:1175–1179. Available from: https://dx.doi.org/10.1016/0360-5442(90)90109-f
  20. Agegnehu G, Bass AM, Nelson PN, Muirhead B, Wright G, Bird MI. Biochar and biochar-compost as soil amendments: Effects on peanut yield, soil properties and greenhouse gas emissions in tropical North Queensland, Australia. Agriculture, Ecosystems & Environment. 2015;213:72–85. Available from: https://dx.doi.org/10.1016/j.agee.2015.07.027
  21. Matuštik J, Hnatkova T, Koči V. Life cycle assessment of biochar-to-soil systems: a review. J Clean Prod. 2020;259(120998). Available from: https://doi.org/10.1016/j.jclepro.2020.120998
  22. Rengel Z. Availability of Mn, Zn and Fe in the rhizosphere. Journal of soil science and plant nutrition. 2015;15(2):397–409. Available from: https://dx.doi.org/10.4067/s0718-95162015005000036
  23. Naeem MA, Khalid M, Aon M, Abbas G, Tahir M, Amjad M, et al. Effect of wheat and rice straw biochar produced at different temperatures on maize growth and nutrient dynamics of a calcareous soil. Archives of Agronomy and Soil Science. 2017;63(14):2048–2061. Available from: https://dx.doi.org/10.1080/03650340.2017.1325468
  24. Kumari K, Prasad J, Solanki IS, Chaudhary R. Long-term effect of crop residues incorporation on yield and soil physical properties under rice - wheat cropping system in calcareous soil. Journal of soil science and plant nutrition. 2018;18(1):27–40. Available from: https://dx.doi.org/10.4067/s0718-95162018005000103
  25. Bityutskii N, Yakkonen K, Petrova A, Nadporozhskaya M. Xylem sap mineral analyses as a rapid method for estimation plant-availability of Fe, Zn and Mn in carbonate soils: a case study in cucumber. Journal of soil science and plant nutrition. 2017;17(2):279–290. Available from: https://dx.doi.org/10.4067/s0718-95162017005000022
  26. Bizuhoraho T, Kayiranga A, Manirakiza N, Mourad KA. The Effect of Land Use Systems on Soil Properties; A case study from Rwanda. Sustainable Agriculture Research. 2018;7(2):30–40. Available from: https://dx.doi.org/10.5539/sar.v7n2p30
  27. Glaser B, Lehmann J, Zech W. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal - a review. Biology and Fertility of Soils. 2002;35(4):219–230. Available from: https://dx.doi.org/10.1007/s00374-002-0466-4
  28. Liu XH, Zhang XC. Effect of biochar on pH of alkaline soils in the loess plateau: Results from incubation experiments. International Journal of Agriculture and Biology. 2012;14(5):745–750.
  29. Zwieten LV, Kimber S, Morris S, Chan KY, Downie A, Rust J, et al. Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant and Soil. 2010;327:235–246. Available from: https://dx.doi.org/10.1007/s11104-009-0050-x
  30. Farrell M, Macdonald LM, Butler G, Chirino-Valle I, Condron LM. Biochar and fertiliser applications influence phosphorus fractionation and wheat yield. Biology and Fertility of Soils. 2014;50(1):169–178. Available from: https://dx.doi.org/10.1007/s00374-013-0845-z
  31. Negis¸ H, Seker C, Gum€us I, Manirakiza N, Mucevher O. Effects of biochar and compost applications € on penetration resistance and physical quality of a sandy clay loam soil. Communications in Soil Science and Plant Analysis. 2020;51(1):38–44. Available from: 10.1080/00103624.2019.1695819
  32. Steiner C, Glaser B, Teixeira WG, Lehmann J, Blum WEH, Zech W. Nitrogen retention and plant uptake on a highly weathered central Amazonian Ferralsol amended with compost and charcoal. Journal of Plant Nutrition and Soil Science. 2008;171(6):893–899. Available from: https://dx.doi.org/10.1002/jpln.200625199
  33. Rondon MA, Lehmann J, Ramírez J, Hurtado M. Biological nitrogen fixation by common beans (Phaseolus vulgaris L.) increases with bio-char additions. Biology and Fertility of Soils. 2007;43(6):699–708. Available from: https://dx.doi.org/10.1007/s00374-006-0152-z
  34. Ali A, Khan MA, Saleem A, Marwat KB, Jan AU, JD, et al. Performance and economics of growing maize under organic and inorganic fertilization and weed management. Pakistan J. Bot. 2016;48(1):311–318.
  35. Khan IA, Kakar SU, Hussain Z, Khan R. Importance value indices of weeds infesting maize crop in the new developmental farm of the University of Agriculture Peshawar. Pakistan J. Weed Sci. Res.. 2016;22(1):63–68.
  36. Bizuhoraho T, Kayiranga A, Manirakiza N, Mourad KA. The Effect of Land Use Systems on Soil Properties; A case study from Rwanda. Sustainable Agriculture Research. 2018;7:30–40. Available from: https://dx.doi.org/10.5539/sar.v7n2p30
  37. Sarfraz R, Shakoor A, Abdullah M, Arooj A, Hussain A, Xing S. Impact of integrated application of biochar and nitrogen fertilizers on maize growth and nitrogen recovery in alkaline calcareous soil. Soil Science and Plant Nutrition. 2017;63:488–498. Available from: https://dx.doi.org/10.1080/00380768.2017.1376225
  38. Zhang A, Liu Y, Pan G, Hussain Q, Li L, Zheng J, et al. Effect of biochar amendment on maize yield and greenhouse gas emissions from a soil organic carbon poor calcareous loamy soil from Central China Plain. Plant Soil. 2012;351:263–275. Available from: 10.1007/s11104-011-0957-x
  39. Chan KY, Zwieten LV, Meszaros I, Downie A, Joseph S. Agronomic values of greenwaste biochar as a soil amendment. Soil Research. 2007;45(8):629–634. Available from: https://dx.doi.org/10.1071/sr07109
  40. Chan KY, Zwieten LV, Meszaros I, Downie A, Joseph S. Using poultry litter biochars as soil amendments. Soil Research. 2008;46(5):437–444. Available from: https://dx.doi.org/10.1071/sr08036
  41. Zhang A, Cui L, Pan G, Li L, Hussain Q, Zhang X. Effect of biochar amendment on yield and methane and nitrous oxide emissions from a rice paddy from Tai Lake plain, China. Agric Ecosyst Environ. 2010;139:469–475.
  42. Major J, Rondon M, Molina D, Riha SJ, Lehmann J. Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol. Plant and Soil. 2010;333(1-2):117–128. Available from: https://dx.doi.org/10.1007/s11104-010-0327-0
  43. Gaskin JW, Speir RA, Harris K, Das KC, Lee RD, Morris LA. Effect of Peanut Hull and Pine Chip Biochar on Soil Nutrients, Corn Nutrient Status, and Yield. Agronomy Journal. 2010;102(2):623–633. Available from: https://dx.doi.org/10.2134/agronj2009.0083
  44. Kearns J. A simple barrel kiln for household charcoal/biochar production. Aqua solutions. 2008;p. 1–12.
  45. Cheng CH, Lehmann J. Ageing of black carbon along a temperature gradient. Chemosphere. 2009;75(8):1021–1027. Available from: https://dx.doi.org/10.1016/j.chemosphere.2009.01.045
  46. Cui L, Li L, Zhang A, Pan G, Bao D, Chang A. Biochar amendment greatly reduces rice Cd uptake in a contaminated paddy soil: a two-year field experiment. Bioresources. 2011;6(3):2605–2618.
  47. Wilde SA, Corey RB, Lyer IG, Viogt GK. Soil and Plant analysis for tree culture. (pp. 96-106) New Delhi. Oxford and IBH Publishing Co. 1985.
  48. Estefan G, Sommer R, Ryan J. International Center for Agriculture Research in the Dry Areas (ICARDA) Methods of Soil, Plant and Water Analysis: Laboratory Manual. 2013.
  49. Mclean EO. AM. Soc. Agron., Madison Soil pH and lime requirement . In: Methods of soil analysis, Part 2: chemical and microbiological properties. (pp. 199-224) 1982.
  50. Rhoades JD. Cation Exchange Capacity. In: ALP, Miller RH, DRK., eds. Methods of soil analysis Part 2: Chemical and microbiological properties. (pp. 149-158) 1982.
  51. Soltanpour PN, Schwab AP. A new soil test for simultaneous extraction of macro‐ and micro‐nutrients in alkaline soils. Communications in Soil Science and Plant Analysis. 1977;8(3):195–207. Available from: https://dx.doi.org/10.1080/00103627709366714
  52. Olsen SR, Cole CV, Watanabe FS, Dean LA. Estimation of available phosphorus in soils by extraction with NaHCO3, USDA Cir.939. U.S. Washington. 1954.
  53. Jones JB. Kjeldahl method for nitrogen determination. Athens, GA, USA. Micro-Macro Publishing Inc. 1991.
  54. Mckenzie NJ, Jacquier DJ, Isbell RF, Brown KL. Australian Soils and Landscapes: An Illustrated Compendium. Collingwood, Victoria. CSIRO Publishing. 2004.
  55. Sonneveld C, Dijk PAV. The effectiveness of some washing procedures on the removal of contaminants from plant tissue samples of glasshouse crops. Communications in Soil Science and Plant Analysis. 1982;13(7):487–496. Available from: https://dx.doi.org/10.1080/00103628209367288
  56. Wolf B. A comprehensive system of leaf analysis and its use for diagnosing crop nutrient status. Commun. Soil Sci. Plant Anal. 1982;13:1035–1059.
  57. Knudsen D, Peterson GA, Pratt PF. ALP., ed. Methods of soil analysis, part 2: Chemical and microbiological properties. (pp. 225-245) Madison, WI, USA. American Society of Agronomy. 1982.
  58. Steel R, Torrie JH, Dickey DA. Principles and procedures of statistics; a biometrical approach (3rd). Boston. McGraw-Hill. 1997.
  59. Zwieten LV, Kimber S, Morris S, Chan KY, Downie A, Rust J. Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant and Soil. 2010;327(1-2):235–246. Available from: https://dx.doi.org/10.1007/s11104-009-0050-x
  60. Major J, Rondon M, Molina D, Riha SJ, Lehmann J. Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol. Plant and Soil. 2010;333(1-2):117–128. Available from: https://dx.doi.org/10.1007/s11104-010-0327-0
  61. Gaskin JW, Speir RA, Harris K, Das KC, Lee RD, Morris LA, et al. Effect of Peanut Hull and Pine Chip Biochar on Soil Nutrients, Corn Nutrient Status, and Yield. Agronomy Journal. 2010;102(2):623–633. Available from: https://dx.doi.org/10.2134/agronj2009.0083
  62. Uzoma KC, Inoue M, Andry H, Fujimaki H, Zahoor A, Nishihara E. Effect of cow manure biochar on maize productivity under sandy soil condition. Soil Use and Management. 2011;27:205–212. Available from: https://dx.doi.org/10.1111/j.1475-2743.2011.00340.x
  63. Sohi S, Capel EL, Krull E, Bol R. Biochar, climate change and soil: a review to guide future research. CSIRO Land Water Sci. Rep. 2010;(09) 1–64.
  64. Nigussie A, Kissi E, Misganaw M, Ambaw G. Effect of biochar application on soil properties and nutrient uptake of lettuces (Lactuca sativa) grown in chromium polluted Soils. Am. Euras. J. Agric. Environ. Sci. 2012;12(3):369–376.
  65. Lehman J, Gaunt J. Bio-char sequestration in terrestrial ecosystems. Mitigation Adapt. Strateg.Glob.Chang. 2006;11:395–419.
  66. Lai WY, Lai CM, Ke GR, Chung RS, Chen CT, Cheng CH, et al. The efects of woodchip biochar application on crop yield, carbon sequestration and greenhouse gas emissions from soils planted with rice or leaf beet. J Taiwan Inst Chem Eng. 2013;44:1039–1044. Available from: https://doi.org/10.1016/J.JTICE .2013.06.028
  67. Dong T, Gao D, Miao C, Yu X, Degan C, Garcia-Pérez M, et al. Two-step microalgal biodiesel production using acidic catalyst generated from pyrolysis-derived bio-char. Energy Conversion and Management. 2015;105:1389–1396. Available from: https://dx.doi.org/10.1016/j.enconman.2015.06.072
  68. Cheng CH, Lehmann J, Engelhard MH. Natural oxidation of black carbon in soils: Changes in molecular form and surface charge along a climosequence. Geochimica et Cosmochimica Acta. 2008;72(6):1598–1610. Available from: https://dx.doi.org/10.1016/j.gca.2008.01.010
  69. Agegnehu G, Bass AM, Nelson PN, Muirhead B, Wright G, Bird MI. Biochar and biochar-compost as soil amendments: Effects on peanut yield, soil properties and greenhouse gas emissions in tropical North Queensland, Australia. Agriculture, Ecosystems & Environment. 2015;213:72–85. Available from: https://dx.doi.org/10.1016/j.agee.2015.07.027
  70. Gaskin JW, Steiner C, Harris K, Das KC, Bibens B. Effect of Low-Temperature Pyrolysis Conditions on Biochar for Agricultural Use. Transactions of the ASABE. 2008;51(6):2061–2069. Available from: https://dx.doi.org/10.13031/2013.25409

Copyright

© 2021 Kakar et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)

DON'T MISS OUT!

Subscribe now for latest articles and news.