• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2020, Volume: 13, Issue: 23, Pages: 2319-2327

Original Article

Soil loss assessment in Sadiya Region, Assam, India using remote sensing and GIS

Received Date:12 May 2020, Accepted Date:13 June 2020, Published Date:06 July 2020


Objectives: This study focuses on identifying areas of intense soil erosion in Sadiya, a subdivision of Tinsukia district of Assam in India to facilitate appropriate implementation of soil management and conservation schemes in an administrative unit. Methods: A comprehensive methodology of Remote Sensing (RS) and Geographical Information System (GIS) is implemented with an empirical model called the Revised Universal Soil Loss Equation (RUSLE). RUSLE is the best model to assess soil loss creating different raster layers in GIS. Findings: This study estimates about 443865 tons of soil loss occurs in Sadiya region annually. The maximum rate of soil loss recorded in Sadiya region is 888.26 t ha-1 year-1 the average soil loss estimated for the region is 5.45 t ha-1 year-1. In addition, a final soil loss map is also created to show the zones of varied soil erosion rates/intensities. Applications/Improvements: The use of RS and GIS in soil loss estimation gives highly accurate result and can be used for extensive area with low cost. The study reveals that soil loss is a serious issue in the region where agriculture is the main economic activity. The outcome of the study may be used directly to address the hazard through management practices.

Keywords: Soil erosion; Assam; remote sensing; GIS; soil loss estimation


  1. Saroha J. Soil erosion: Causes Extent and Management in India. International Journal of Creative Research Thought. 2017;5(4):1321–1330.
  2. Singh G, Babu R, Narain P, Bhusan LS, Abrol IP. Soil erosion rates in India. Journal Soil Water Conservation. 1992;47(1):97–99.
  3. Kalita N, Sarmah R. Soil loss sensitivity in the Belsiri River basin using Universal Soil Loss Equation in GIS. International Journal of Current Research. 2016;8(3):28831–28838.
  4. Benavidez R, Jackson B, Maxwell D, Norton K. A review of the (Revised) Universal Soil Loss Equation ((R)USLE): with a view to increasing its global applicability and improving soil loss estimates. Hydrology and Earth System Sciences. 2018;22:6059–6086. Available from: https://dx.doi.org/10.5194/hess-22-6059-2018
  5. Patowary S, Sarma AK. GIS-Based Estimation of Soil Loss from Hilly Urban Area Incorporating Hill Cut Factor into RUSLE. Water Resources Management. 2018;32(10):3535–3547. Available from: https://dx.doi.org/10.1007/s11269-018-2006-5
  6. Srinivasan R, Singh SK, Nayak DC, Hegde R, Ramesh M. Estimation of soil loss by USLE Model using Remote Sensing and GIS Techniques - A Case study of Coastal Odisha, India. EURASIAN JOURNAL OF SOIL SCIENCE (EJSS). 2019;8(4):321–328. Available from: https://dx.doi.org/10.18393/ejss.598120
  7. Jaiswal M, Amin N. The impact of land use dynamics on the soil erosion in the Panchnoi River Basin, Northeast India. Journal of the Geographical Institute Jovan Cvijic, SASA. 2020;70(1):1–14. Available from: https://dx.doi.org/10.2298/ijgi2001001j
  8. Renard KG, Foster RG, Weesies GA, Porter GA, J. RUSLE Revised universal soil loss equation. Journal of Soil and Water Cocervation. 1991;46(1):30–33.
  9. Nikam. (accessed ) Available from: www.youtu.be/qkYt0q4Qth4
  10. Blanco-Canqui H, Lal R. Principles of Soil Conservation and Management. 2008.
  11. Pérez-Rodríguez R, Marques MJ, Bienes R. Spatial variability of the soil erodibility parameters and their relation with the soil map at subgroup level. Science of The Total Environment. 2007;378:166–173. Available from: https://dx.doi.org/10.1016/j.scitotenv.2007.01.044
  12. Mhangara P, Kakembo V, Lim KJ. Soil erosion risk assessment of the Keiskamma catchment, South Africa using GIS and remote sensing. Environmental Earth Sciences. 2012;65(7):2087–2102. Available from: https://dx.doi.org/10.1007/s12665-011-1190-x
  13. Moore ID, Burch GJ. Modelling Erosion and Deposition: Topographic Effects. Transactions of the ASAE. 1986;29(6):1624–1630. Available from: https://dx.doi.org/10.13031/2013.30363
  14. Knijff MVD, Jones RJA, Montanarella L. European Soil Bureau Joint Research Centre Soil Erosion Risk Assessment in Italy. 1999.
  15. Karaburun A. Estimation of C factor for soil erosion modelling using NDVI in Buyukcekmece watershed. Ozean Journal of Applied Sciences. 2010;3(1):77–85.
  16. Panagos P, Borrelli P, Meusburger K, Alewell C, Lugato E, Montanarella L. Estimating the soil erosion cover-management factor at the European scale. Land Use Policy. 2015;48:38–50. Available from: https://dx.doi.org/10.1016/j.landusepol.2015.05.021
  17. Rahaman SA, Aruchamy S, Jegankumar R, Ajeez SA. ESTIMATION OF ANNUAL AVERAGE SOIL LOSS, BASED ON RUSLE MODEL IN KALLAR WATERSHED, BHAVANI BASIN, TAMIL NADU, INDIA. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences. 2015;II-2/W2(2):207–214. Available from: https://dx.doi.org/10.5194/isprsannals-ii-2-w2-207-2015
  18. Narayana D, Babu R. Closure to Estimation of soil erosion in India. Journal of Irrigation Drain Engineering. 1983;109(4):408–410.


© 2020 Das, Gogoi, Jaiswal. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.