• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology

Article

Indian Journal of Science and Technology

Year: 2020, Volume: 13, Issue: 30, Pages: 3093-3102

Original Article

Solitons transmission system : A dynamic shift in optical fiber communication

Received Date:22 April 2020, Accepted Date:10 August 2020, Published Date:19 August 2020

Abstract

Objective: To present a detailed study of Solitons transmission system,including their types, applications, effects, and updated research work and research gaps. Findings: The 4th, generation fiber optic communication system utilizes visual amplification to decrease the demand for repeaters and WDM to increase the information power. Similarly, 5th the phase of Optical Fiber Communication is now expending the distances range which the wavelength division multiplexing system will control. The traditional wave length frame called the C ring covers the distance range 1.53 to 1.57 um and dry material has the low loss window promising extension of range to 1.30 to 1.65 um. Additional development includes the idea of visual solitons pulses that maintain their body by counteracting the results of distribution with nonlinear effects of this material by applying pulses of specific shape. Application: This will motivate the researchers to undertake research work in the field of Solitons communication to achieve improved design characteristics, reducing number of repeaters, cost and higher data rate transmissions.

Keywords: Inter Symbol Interference (ISI); Group Velocity Dispersion (GVD);Self-Phase Modulation (SPM); WDM; OFDM

References

  1. Sreedevinai S, Prem V. Solitons A Promising Technology in Optical Communication. International Journal of Science and Research. 2014. Available from: httpsdoi.org/10.1088/0305-4470/33/18/308
  2. Chawda DNB. Soliton and its underlaying principle of information carrying bits. International Journal of Conceptions on computing and Information Technology. 2016;5. Available from: https:/www.doi.org/10.36106/paripex
  3. Song Y, Wang Z, Wang C, Panajotov K, Zhang H. Recent progress on optical rogue waves in fiber lasers: status, challenges, and perspectives. Advanced Photonics. 2020;2:1. Available from: https://dx.doi.org/10.1117/1.ap.2.2.024001
  4. Song YF, Zhang H, Zhao LM, Shen DY, Tang DY. Coexistence and interaction of vector and bound vector solitons in a dispersion-managed fiber laser mode locked by graphene. Optics Express. 2016;24(2):1814. Available from: https://dx.doi.org/10.1364/oe.24.001814
  5. Wang Z, Wang X, Song Y, Liu J, Zhang H. Generation and pulsating behaviors of loosely bound solitons in a passively mode-locked fiber laser. Physical Review A. 2020;101(1). Available from: https://dx.doi.org/10.1103/physreva.101.013825
  6. Mao D, Jiang B, Gan X, Ma C, Chen Y, Zhao C, et al. Soliton fiber laser mode locked with two types of film-based Bi_2Te_3 saturable absorbers. Photonics Research. 2015;3(2):A43. Available from: https://dx.doi.org/10.1364/prj.3.000a43
  7. Guo B, Wang SH, Wu ZX, Wang ZX, Wang DH, Huang H, et al. Sub-200 fs soliton mode-locked fiber laser based on bismuthene saturable absorber. Optics Express. 2018;26(18):22750. Available from: https://dx.doi.org/10.1364/oe.26.022750
  8. Bowen P, Erkintalo M, Neil GR, Broderick. Large net-normal dispersion Er-doped fiber laser mode-locked with a nonlinear amplifying loop mirror. Optics Communication. 2018. Available from: https://doi.org/10.1016/j.optcom.2017.10.053
  9. Yang X, Shen L, Ramamurthy B. Survivable lightpath provisioning in WDM mesh networks under shared path protection and signal quality constraints. Journal of Lightwave Technology. 2005;23(4):1556–1567. Available from: https://dx.doi.org/10.1109/jlt.2005.844495
  10. Navarrete A, Paredes A, Salgueiro JR, Michinel H. Spatial solitons in thermo-optical media from the nonlinear Schrödinger-Poisson equation and dark-matter analogs. Physical Review A. 2017;95(1):13844. Available from: https://dx.doi.org/10.1103/physreva.95.013844
  11. Chen Z, Segev M, Christodoulides DN. Optical spatial solitons: historical overview and recent advances. Reports on Progress in Physics. 2012;75(8):086401. Available from: https://dx.doi.org/10.1088/0034-4885/75/8/086401
  12. Wang BH, Lu PH, Dai CQ, Chen YX. Vector optical soliton and periodic solutions of a coupled fractional nonlinear Schrödinger equation. Results in Physics. 2020;17:103036. Available from: https://dx.doi.org/10.1016/j.rinp.2020.103036
  13. Song Y, Shi X, Wu C, Tang D, Zhang H. Recent progress of study on optical soliton in fiber laser. Applied Physics. 2019. Available from: https://doi.org/10.1063/1.5091811
  14. Yakupyıldırım. Optical soliton molecules of Manakov model by modified simple equation technique. Optik- International Journal for Light and Electron. 2019;185. Available from: https://doi.org/10.1016/j.ijleo.2019.04.046
  15. Mamyshev PV, Chernikov SV, Dianov EM. Generation of fundamental soliton trains for high-bit-rate optical fiber communication lines. IEEE Journal of Quantum Electronics. 1991;27(10):2347–2355. Available from: https://dx.doi.org/10.1109/3.97280
  16. Zhao Y, Chen Y, Dai J, Wang Y, Wang W. Bright Soliton Solution of (1+1)-Dimensional Quantum System with Power-Law Dependent Nonlinearity. Advances in Mathematical Physics. 2019;2019:1–5. Available from: https://dx.doi.org/10.1155/2019/8264848
  17. Amiriand S, Ali J. Femtosecond Optical Quantum Memory Generation Using Optical Bright Soliton. Journal of Computational and Theoretical Nanoscience. 1480;11:1480–1485. Available from: https://doi.org/10.1166/jctn.2014.3521
  18. Williams KJ, Esman RD. Stimulated Brillouin scattering for improvement of microwave fibre-optic link efficiency. Electronics Letters. 1994;30(23):1965–1966. Available from: https://dx.doi.org/10.1049/el:19941344
  19. Singh M, Saini HS. High Performance Soliton WDM Optical Communication System. IEEE Computer society. 2014. Available from: https:/doi.org/10.1109/ICACC.2014.11, 2014
  20. Poutrina E, Agrawal GP. Timing jitter in dispersion-managed soliton systems with distributed, lumped, and hybrid amplification. Journal of Lightwave Technology. 2002;20(5):790–797. Available from: https://dx.doi.org/10.1109/jlt.2002.1007931
  21. Subramanian K, Alagesan T, Mahalingam A, Rajan MSM. Propagation properties of optical soliton in an erbium-doped tapered parabolic index nonlinear fiber: soliton control. Nonlinear Dynamics. 2017;87(3):1575–1587. Available from: https://dx.doi.org/10.1007/s11071-016-3134-1
  22. Biswas A, Ekici M, Sonmezoglu A, Belic RM. Highly dispersive optical solitons with Kerr law nonlinearity by exp-function. Optik. 2019;185:121–125. Available from: https://dx.doi.org/10.1016/j.ijleo.2019.03.069

Copyright

© 2020 Bagri & Kumar.This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee).

DON'T MISS OUT!

Subscribe now for latest articles and news.