• P-ISSN 0974-6846 E-ISSN 0974-5645

# Indian Journal of Science and Technology

## Article

• VIEWS 130
• PDF 53

Indian Journal of Science and Technology

Year: 2024, Volume: 17, Issue: 19, Pages: 1994-2001

Original Article

## Solving Time-fractional Order Radon Diffusion Equation in Water by Finite Difference Method

Received Date:21 March 2024, Accepted Date:21 April 2024, Published Date:09 May 2024

## Abstract

Objective: The aim of this research is to gain a comprehensive understanding of radon diffusion equation in water. Methods: A time fractional radon diffusion equation with Caputo sense is employed to find diffusion dynamics of radon in water medium. The fractional order explicit finite difference technique is used to find its numerical solution. A Python software is used to find numerical solution. Findings: The effect of fractional-order parameters on the distribution and concentration profiles of radon in water has been investigated. Furthermore, we study stability and convergence of the explicit finite difference method. Novelty: The fractional order explicit finite difference method can be used to estimate approximate solution of such fractional order differential equations.

Keywords: Radon Diffusion Equation, Finite Difference Method, Caputo, Fractional Derivative, Python

## References

1. Kumar D, Baleanu D. Editorial: Fractional Calculus and Its Applications in Physics. Frontiers in Physics. 2019;7:1–2. Available from: https://dx.doi.org/10.3389/fphy.2019.00081
2. Singh J, Hristov JY, Hammouch Z., eds. New Trends in Fractional Differential Equations with Real-World Applications in Physics. (pp. 1-172) Frontiers in Physics. 2009.
3. Owolabi KM, Atangana A. Numerical Methods for Fractional Differentiation, Springer Series in Computational Mathematics (1). (Vol. 54, p. XVI, 328) Singapore. Springer . 2019.
4. Kharde U, Takale K, Gaikwad S. Numerical solution of time fractional drug concentration equation in central nervous system. Journal of Mathematical and Computational Science. 2021;11(6):7317–7353. Available from: https://scik.org/index.php/jmcs/article/view/6470
5. Takale K, Kharde U, Takale G. Fractional Order Mathematical Model to Investigate Topical Drug Diffusion in Human Skin. Indian Journal Of Science And Technology. 2023;16(48):4657–4666. Available from: https://dx.doi.org/10.17485/ijst/v16i48.2113
6. Takale K, Kharde U, Gaikwad S. Investigation of Fractional Order Tumor Cell Concentration Equation Using Finite Difference Method. Baghdad Science Journal. 2024;21(9):1–10. Available from: https://dx.doi.org/10.21123/bsj.2024.9246
7. Shrimangale GW, Raut SR. Crank-Nicolson approximation of fractional order for time fractional radon diffusion equation in soil medium. Journal of Mathematical and Computational Science. 2022;12:1–15. Available from: https://scik.org/index.php/jmcs/article/view/7342
8. Wang Y, Cai M. Finite Difference Schemes for Time-Space Fractional Diffusion Equations in One- and Two-Dimensions. Communications on Applied Mathematics and Computation. 2023;5(4):1674–1696. Available from: https://dx.doi.org/10.1007/s42967-022-00244-8
9. Yadav S, Kumar D, Nisar KS. A reliable numerical method for solving fractional reaction-diffusion equations. Journal of King Saud University - Science. 2021;33(2):1–8. Available from: https://dx.doi.org/10.1016/j.jksus.2020.101320