• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2020, Volume: 13, Issue: 31, Pages: 3198-3203

Original Article

Some results on commutativity of MA-semirings

Received Date:27 June 2020, Accepted Date:25 July 2020, Published Date:29 August 2020


Objective: The main aim of this article is to extend the concept of involution for a certain class of semirings known as MA-semirings. Now a days the commutativity conditions in the theory of rings and semirings becomes crucial for researchers. This motivates us to discuss some conditions on MA-semirings with involution which enforces commutativity. Method: We use the tools of derivations and involutions of second kind on MA-semirings. Findings: We are able to find the conditions of commutativity in semirings through these particular mappings. Novelty: To define the concept of Hermitian elements in MA-semirings with involution and to establish some commutativity results through different conditions involving Hermitian elements is the novel idea.


  1. Beidar KI, Martindale WS. On Functional Identities in Prime Rings with Involution. Journal of Algebra. 1998;203(2):491–532. Available from: https://dx.doi.org/10.1006/jabr.1997.7285
  2. Herstein N. Rings with involution. University of Chicago. 1976.
  3. Lanski C. Commutation with skew elements in rings with involution. Pacific Journal of Mathematics. 1979;83(2):393–399. Available from: https://dx.doi.org/10.2140/pjm.1979.83.393
  4. Lee T. On Derivations of prime rings with involution. Chin. J. of Math. 1992;20(2):191–203.
  5. Lee P. On subrings of rings with involution. Pacific J. Math. 1975;60(2):131–147.
  6. Chadja I, Langer H. Near semirings and semirings with involution. Misk. Math. Notes. 2017;17(2):801–810.
  7. Dolinka I. Idempotent distributive semirings with involution. International Journal of Algebra and Computation. 2003;13(05):597–625. Available from: https://dx.doi.org/10.1142/s0218196703001614
  8. Markov RV. Pierce sheaf for semirings with involution. Russian Mathematics. 2014;58(4):14–19. Available from: https://dx.doi.org/10.3103/s1066369x14040033
  9. Salli VN, Polukolec KTI. Izv, Vyssh. Uc.Zav Mat. 1969;3:52–60.
  10. Javed M, Aslam M, Hussain M. On condition (A2) of Bandlet and Petrich for inverse semirings. Int. Math. Forum. 2012;7(59):2903–2914.
  11. Javed M, Aslam M. Commuting mappings of semiprime MA-semirings. WASJ. .
  12. Nadeem M, Aslam M. On the additive maps satisfying skew Engel conditions. J. of Alg. and Rel. Top. 2017;5(2):47–58.
  13. Nadeem M, Aslam M, Javed MA. On the generalization of Bresar theorems. Quasi. and Rel. Sys. 2016;24:123–128.
  14. Aslam M, Javed MA, Sara S. On centralizer of semiprime inverse semiring. Discussiones Mathematicae - General Algebra and Applications. 2016;36(1):71. Available from: https://dx.doi.org/10.7151/dmgaa.1252
  15. Shafiq S, Aslam M. On Jordan mappings of inverse semirings. Open Mathematics. 2017;15(1):1123–1131. Available from: https://dx.doi.org/10.1515/math-2017-0088
  16. Ali L, Aslam M, Khan Y. On additive maps of MA-semirings with involution. (Vol. 39, pp. 1097-1112) Proyecciones (Antofagasta, On. 2020.
  17. Ali L, Aslam M, Khan Y. Commutativity of semirings with involution. Asian-European J. of Math. 2019. Available from: https://doi.org/10.1142/S1793557120501533
  18. Ali L, Aslam M, Khan Y. On Jordan ideals of inverse semirings with involution. Indian J. of Sci. and Tech. 2020;13(04):430–438.
  19. Ali L, Aslam M, Khan YA. SOME COMMUTATIVITY CONDITIONS ON *-PRIME SEMIRINGS. JP Journal of Algebra, Number Theory and Applications. 2020;46(2):109–121. Available from: https://dx.doi.org/10.17654/nt046020109
  20. Ali L, Aslam M, Khan Y, Farid G. On generalized derivations of semirings with involution. J. of Mech. Cont. and Math. Sci. 2020;15(4):138–152.
  21. Atteya M. Derivations on MA-semirings. Math. Sci. Lett. 2015;4(3):1–5.
  22. Ahmed Y, Dudek AW. Stronger Lie derivations on MA-semirings. Afrika Matematika. 2020;31(5-6):891–901. Available from: https://dx.doi.org/10.1007/s13370-020-00768-3
  23. Khan Y, Nadeem M, Aslam M. On centralizers Of MA-semirings. J.of Mech. Cont. and Math. Sci. 2020;15(4):47–57.
  24. Khan YA, Aslam M, Ali L. Commutativity of additive inverse semirings through f(xy) = [x,f(y) Thai J. of Math., Special Issue. 2018;p. 288–300.
  25. Ali S, Dar NA, Asci M. On derivations and commutativity of prime rings with involution. Georgian Mathematical Journal. 2016;23(1). Available from: https://dx.doi.org/10.1515/gmj-2015-0016


© 2020 Ali et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee).


Subscribe now for latest articles and news.