• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2023, Volume: 16, Issue: 1, Pages: 12-22

Original Article

Spatiotemporal Database Schema for Data Driven Applications in Smart Agriculture

Received Date:17 August 2022, Accepted Date:30 November -0001, Published Date:03 January 2023


Background: Data driven sustainable agriculture involves the collection, storage, processing, and analysis of enormous spatiotemporal data related to crop production processes, systems, infrastructure, and environment. Literature survey on smart agriculture research projects indicates that there is a need for improving handling of spatiotemporal data. There are gaps in handling spatial and temporal variability of parameters, division of crop field into management zones to reduce the variability for optimizing application of inputs such as fertilizers, water or pesticides. These gaps are to be addressed at design level of spatiotemporal database for smart agriculture. Objective: To engineer a spatiotemporal database schema that can be used for data driven sustainable agriculture. Methods: The methodology involves spatiotemporal data representation and modeling, Object oriented analysis and design of the database and Verification of the database using life cycle model and algorithmic steps. Findings: The resulting database is capable to store spatial and temporal variability of soil, plant and water parameters as well as handle spatial split, spatial merge, geometry and location changes of spatiotemporal objects. Novelty: Novel Use cases in smart agriculture along with spatiotemporal attributes are identified so that efficient applications can be realized. Adaption of the spatiotemporal database schema for Smart Irrigation System and its implementation methodology are presented.

Keywords: Spatiotemporal Database Design; Data-Driven Agriculture; Agriculture Informatics; Database Verification; Spatiotemporal Data Analysis


  1. Grimblatt V, Jego C, Ferre G, Rivet F. How to Feed a Growing Population—An IoT Approach to Crop Health and Growth. IEEE Journal on Emerging and Selected Topics in Circuits and Systems. 2021;11(3):435–448. Available from: https://doi.org/10.1109/JETCAS.2021.3099778
  2. Ahmad S, Huang NF. Big Data and AI Revolution in Precision Agriculture: Survey and Challenges. IEEE Access. 2021;9:110209–110222. Available from: https://doi.org/10.1109/ACCESS.2021.3102227
  3. Di L, Üstünda˘g BB, Guo L, Shang J, Yang R. Foreword to the Special Issue on Digital Innovations in Agriculture Research and Applications. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 2020;13:6519–6523. Available from: https://doi.org/10.1109/JSTARS.2020.3044424
  4. Kumar R, Mishra R, Gupta HP, Dutta T. Smart Sensing for Agriculture: Applications, Advancements, and Challenges. IEEE Consumer Electronics Magazine. 2021;10(4):51–56. Available from: https://doi.org/10.1109/mce.2021.3049623
  5. Yadav S, Kaushik A, Sharma M, Sharma S. Disruptive Technologies in Smart Farming: An Expanded View with Sentiment Analysis. AgriEngineering. 2022;4(2):424–460. Available from: https://doi.org/10.3390/agriengineering4020029
  6. Zambon MI, Cecchini G, Egidi MG, Saporito A, Colantoni. Revolution 4.0: Industry vs. Agriculture in a Future Development for SMEs. 2019. Available from: https://doi.org/10.3390/pr7010036
  7. Condran S, Bewong M, Islam MZ, Maphosa L, Zheng L. Machine Learning in Precision Agriculture: A Survey on Trends, Applications and Evaluations Over Two Decades. IEEE Access. 2022;10:73786–73803. Available from: https://doi.org/10.1109/ACCESS.2022.3188649
  8. Juventia SD, Norén ILMS, Apeldoorn DFV, Ditzler L, Rossing WAH. Spatio-temporal design of strip cropping systems. Agricultural Systems. 2022;201:103455. Available from: https://doi.org/10.1016/j.agsy.2022.103455
  9. Ojha T, Misra S, Raghuwanshi NS. Internet of Things for Agricultural Applications: The State of the Art. IEEE Internet of Things Journal. 2021;8(14):10973–10997. Available from: https://doi.org/10.1109/jiot.2021.3051418
  10. Keskin S, Yazıcı A. Modeling and Querying Fuzzy SOLAP-Based Framework. ISPRS International Journal of Geo-Information. 2022;11(3):191. Available from: https://doi.org/10.3390/ijgi11030191
  11. Wisnubhadra I, Baharin S, Herman N. Open Spatiotemporal Data Warehouse for Agriculture Production Analytics. International Journal of Intelligent Engineering and Systems. 2020;13(6):419–431. Available from: https://doi.org/10.22266/ijies2020.1231.37
  12. Banko A, Banković T, Pavasović M, Đapo A. An All-in-One Application for Temporal Coordinate Transformation in Geodesy and Geoinformatics. ISPRS International Journal of Geo-Information. 2020;9(5):323. Available from: https://doi.org/10.3390/ijgi9050323
  13. Rao KV, Govardhan A, Rao KVC. An Object-Oriented Modeling and Implementation of Spatio-Temporal Knowledge Discovery System. International Journal of Computer Science and Information Technology. 2011;3(2):61–76. Available from: https://doi.org/10.5121/ijcsit.2011.3205
  14. Yang C, Clarke K, Shekhar S, Tao CV. Big Spatiotemporal Data Analytics: a research and innovation frontier. International Journal of Geographical Information Science. 2020;34(6):1075–1088. Available from: https://doi.org/10.1080/13658816.2019.1698743
  15. Solano-Correa YT, Bovolo F, Bruzzone L, Fernandez-Prieto D. A Method for the Analysis of Small Crop Fields in Sentinel-2 Dense Time Series. IEEE Transactions on Geoscience and Remote Sensing. 2020;58(3):2150–2164. Available from: https://doi.org/10.1109/TGRS.2019.2953652
  16. Tseng FH, Cho HH, Wu HT. Applying Big Data for Intelligent Agriculture-Based Crop Selection Analysis. IEEE Access. 2019;7:116965–116974. Available from: https://doi.org/10.1109/ACCESS.2019.2935564
  17. Linaza MT, Posada J, Bund J, Eisert P, Quartulli M, Döllner J, et al. Data-Driven Artificial Intelligence Applications for Sustainable Precision Agriculture. Agronomy. 2021;11(6):1227. Available from: https://doi.org/10.3390/agronomy11061227
  18. Saiz V, Rubio , Rovira-Mas F. From Smart Farming towards Agriculture 5.0: A Review on Crop Data Management. MDPI Agronomy. 2020;10(2):207. Available from: https://doi.org/10.3390/agronomy10020207
  19. Nyéki A, Kerepesi C, Daróczy B, Benczúr A, Milics G, Nagy J, et al. Application of spatio-temporal data in site-specific maize yield prediction with machine learning methods. Precision Agriculture. 2021;22(5):1397–1415. Available from: https://doi.org/10.1007/s11119-021-09833-8
  20. Roussaki I, Doolin K, Skarmeta A, Routis G, Lopez-Morales JA, Claffey E, et al. Building an interoperable space for smart agriculture. Digital Communications and Networks. 2022. Available from: https://doi.org/10.1016/j.dcan.2022.02.004
  21. Roy SSK, Misra N, Raghuwanshi SKS. AgriSens: IoT-Based Dynamic Irrigation Scheduling System for Water Management of Irrigated Crops. IEEE Internet of Things Journal. 2021;8(6):5023–5030. Available from: https://doi.org/10.1109/JIOT.2020.3036126


© 2023 Rao. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.