• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2021, Volume: 14, Issue: 26, Pages: 2206-2214

Original Article

Strength and Swelling Behavior of Black Cotton Soil Stabilized with Waste Rubber Tyre

Received Date:29 May 2021, Accepted Date:15 July 2021, Published Date:30 July 2021


Objectives: To determine the strength and swelling behavior of black cotton soil (expansive soil) using a shredded rubber tyre as an additive. Methods: Series of unconfined compressive strength and California Bearing Ratio (CBR) tests were carried out on black cotton soil mixed with 0%, 5%, 10%, and 15% of shredded rubber tyres, and the results were compared with untreated soil samples. The study also investigated the influence of shredded rubber on swelling characteristics of black cotton soil by performing the swelling pressure test. Findings: From the experimental results, it is inferred that the optimum addition of a 10% shredded rubber tyre can effectively improve the strength behavior of black cotton soil. The unconfined compressive strength and California Bearing Ratio (CBR) of soil stabilized with 10% of shredded rubber tyre increased by 32 % and 49.3% respectively as compared to the untreated soil. An illustration presented shows the effect of increased CBR in terms of the reduction of 18% pavement thickness. This may reduce the total cost of the project. The present study also investigated the swelling potential of Black cotton soil and it is found to be decreased by 33.33% for the addition of 15% shredded rubber soil as compared to untreated soil. Novelty: The use of shredded rubber in expansive soil increased its CBR value, leading to a reduction in 18% of pavement thickness. Hence, it may lead to a further reduction in the total cost of the project. Also, the disposal problem of waste rubber tyres is resolved up to a certain extent.

Keywords: Shredded Rubber Tyre; Black Cotton Soil; Unconfined Compressive Strength; California Bearing Ratio; Soil Stabilization


  1. Shukla R, Prasad N, Yadav P, Mankotia N. Problems and treatments of black cotton soil. .
  2. Hubballi RM, Rahman SK, Paul A. Performance analysis of stone dust stabilized clayey soil from the Bilasipara region in North-Eastern India. International Journal of Advanced Research in Engineering and Technology. 2021;12(2):422–429. Available from: http://www.iaeme.com/IJARET/issues.asp?JType=IJARET&VType=12&IType=2
  3. Jalal FE, Xu Y, Jamhiri B, Memon SA. On the Recent Trends in Expansive Soil Stabilization Using Calcium-Based Stabilizer Materials (CSMs): A Comprehensive Review. Advances in Materials Science and Engineering. 2020;p. 1–23. Available from: https://dx.doi.org/10.1155/2020/1510969
  4. Obulreddy S, Kumar TK. A critical review on foundations in expansive soils. International Journal of Scientific Development and Research. 2019;4(2):13–18. Available from: https://www.ijsdr.org/papers/IJSDR1902004.pdf
  5. Liu J, Shi B, Jiang H, Huang H, Wang G, Kamai T. Research on the stabilization treatment of clay slope topsoil by organic polymer soil stabilizer. Engineering Geology. 2011;117(1-2):114–120. Available from: https://dx.doi.org/10.1016/j.enggeo.2010.10.011
  6. Ikeagwuani CC, Donald CN. Emerging trends in expansive soil stabilization: A review. Journal of Rock Mechanics and Geotechnical Engineering. 2017;11:423–440. Available from: https://doi.org/10.1016/j.jrmge.2018.08.013
  7. Mir BA, Samala HR. Mechanical behavior of Nano-material (Al2O3) stabilized soft soil. International Journal of Engineering. 2021;34(3):636–643. Available from: 10.5829/ije.2021.34.03c.07
  8. Yadav JS, Tiwari SK. Behavior of cement stabilized treated coir fibre- reinforced clay -pond ash mixtures. Journal of Building Engineering. 2016;8:131–140. Available from: https://doi.org/10.1016/j.jobe.2016.10.006
  9. Jayanti P, Singh DP. Utilization of sustainable materials for soil stabilization: State of the art. Journal of Advances in Civil Engineering Materials. 2016;5(1).
  10. Firoozi AA, Olgun CG, Firoozi AA, Baghini MS. Fundamentals of soil stabilization. International Journal of Geo-Engineering. 2017;8(1):2–16. Available from: https://dx.doi.org/10.1186/s40703-017-0064-9
  11. Tang C, Shi B, Gao W, Chen F, Cai Y. Strength and mechanical behavior of short polypropylene fiber reinforced and cement stabilized clayey soil. Geotextiles and Geomembranes. 2007;25:194–202. Available from: https://dx.doi.org/10.1016/j.geotexmem.2006.11.002
  12. Fatahi B, Khabbaz H, Fatahi B. Mechanical characteristics of soft clay treated with fibre and cement. Geosynthetics International. 2012;19(3):252–262. Available from: https://dx.doi.org/10.1680/gein.12.00012
  13. Kumar A, Gupta D. Behavior of cement-stabilized fiber-reinforced pond ash, rice husk ash-soil mixtures. Geotextile and Geomembranes. 2016;44:466–474. Available from: http://dx.doi.org/10.1016/j.geotexmem.2015.07.010
  14. Kumar A, Walia BS, Bajaj A. Influence of Fly Ash, Lime, and Polyester Fibers on Compaction and Strength Properties of Expansive Soil. Journal of Materials in Civil Engineering. 2007;19(3):242–248. Available from: https://dx.doi.org/10.1061/(asce)0899-1561(2007)19:3(242)
  15. Thomas BS, Gupta RC, Panicker VJ. Recycling of waste tire rubber as aggregate in concrete: durability-related performance. Journal of Cleaner Production. 2016;112:504–513. Available from: https://dx.doi.org/10.1016/j.jclepro.2015.08.046
  16. Angelin AF, Andrade MFF, Bonatti R, Lintz RCC, Gachet-Barbosa LA, Osório WR. Effects of spheroid and fiber-like waste-tire rubbers on interrelation of strength-to-porosity in rubberized cement and mortars. Construction and Building Materials. 2015;95:525–536. Available from: https://dx.doi.org/10.1016/j.conbuildmat.2015.07.166
  17. Gupta T, Chaudhary S, Sharma RK. Mechanical and durability properties of waste rubber fiber concrete with and without silica fume. Journal of Cleaner Production. 2016;112:702–711. Available from: https://dx.doi.org/10.1016/j.jclepro.2015.07.081
  18. Cetin H, Fener M, Gunaydin O. Geotechnical properties of tire-cohesive clayey soil mixtures as a fill material. Engineering Geology. 2006;88(1-2):110–120. Available from: https://dx.doi.org/10.1016/j.enggeo.2006.09.002
  19. Signes CH, Garzón-Roca J, Fernández PM, Torre MEGdl, Franco RI. Swelling potential reduction of Spanish argillaceous marlstone Facies Tap soil through the addition of crumb rubber particles from scrap tyres. Applied Clay Science. 2016;132-133(132):768–773. Available from: https://dx.doi.org/10.1016/j.clay.2016.07.027
  20. Yadav JS, Tiwari SK. The impact of end-of-life tires on the mechanical properties of fine-grained soil: A Review. Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development. 2017;2:485–568. Available from: 10.1007/s10668-017-0054-2
  21. Al-Tabbaa A, Blackwell O, Porter SA. An Investigation into the Geotechnical Properties of Soil-Tyre Mixtures. Environmental Technology. 1997;18(8):855–860. Available from: https://dx.doi.org/10.1080/09593331808616605
  22. Seda JH, Lee JC, Antonio J, Carraro H. Beneficial use of waste tire rubber for swelling potential mitigation in expansive soils. Soil Improvement. 2007. Available from: https://doi.org/10.1061/40916(235)5
  23. Mukherjee K, Mishra AK. The Impact of Scrapped Tyre Chips on the Mechanical Properties of Liner Materials. Environmental Processes. 2017;4(1):219–233. Available from: https://dx.doi.org/10.1007/s40710-017-0210-6
  24. Chan CM. Mechanical properties of clayey sand treated with cement-rubber shreds. Civil Engineering Dimension. 2012;14(1):7–12. Available from: http://dx.doi.org/10.9744/ced.14.1.7-12
  25. Daud N, Yusoff Z, Muhammed A. Ground Improvement of Problematic Soft Soils Using Shredded Waste Tyre. The Sixth Jordanian International Civil Engineering Conference (Jeaconf. Org 1-5). 2015.
  26. Akbulut S, Arasan S, Kalkan E. Modification of clayey soils using scrap tire rubber and synthetic fibers. Applied Clay Science. 2007;38(1-2):23–32. Available from: https://dx.doi.org/10.1016/j.clay.2007.02.001
  27. Otoko GR, Pedro PP. Cement stabilization of laterite and Chikoko soils using waste rubber fibre. International Journal of Engineering Sciences and Research Technology. 2014;3(10):130–136. Available from: https://www.researchgate.net/publication/267211553
  28. Kim YT, Kang HS. Engineering Characteristics of Rubber-Added Lightweight Soil as a Flowable Backfill Material. Journal of Materials in Civil Engineering. 2011;23(9):1289–1294. Available from: https://dx.doi.org/10.1061/(asce)mt.1943-5533.0000307
  29. Cabalar AF, Karabash Z, Mustafa WS. Stabilising a clay using tyre buffings and lime. Road Materials and Pavement Design. 2014;15:872–891. Available from: https://dx.doi.org/10.1080/14680629.2014.939697
  30. Tajdini M, Nabizadeh A, Taherkhani H, Zartaj H. Effect of Added Waste Rubber on the Properties and Failure Mode of Kaolinite Clay. International Journal of Civil Engineering. 2017;15(6):949–958. Available from: https://dx.doi.org/10.1007/s40999-016-0057-7
  31. Kim YT, Kang HS. Effects of Rubber and Bottom Ash Inclusion on Geotechnical Characteristics of Composite Geomaterial. Marine Georesources & Geotechnology. 2013;31(1):71–85. Available from: https://dx.doi.org/10.1080/1064119x.2012.667867
  32. Priyadarshee A, Gupta D, Kumar V, Sharma V. Comparative Study on Performance of Tire Crumbles with Fly Ash and Kaolin Clay. International Journal of Geosynthetics and Ground Engineering. 2015;1(4):1–7. Available from: https://dx.doi.org/10.1007/s40891-015-0033-3
  33. Tang CS, Shi B, Zhao LZ. Interfacial shear strength of fiber reinforced soil Geotextiles and Geomembranes. Geotextiles and Geomembranes. 2010;28:54–62. Available from: http://doi.org/10.1016/j.geotexmem.2009.10.001
  34. Yadav JS, Hussain S, Tiwari SK, Garg A. Assessment of the Load–Deformation Behaviour of Rubber Fibre–Reinforced Cemented Clayey Soil. Transportation Infrastructure Geotechnology. 2019;6(2):105–136. Available from: https://dx.doi.org/10.1007/s40515-019-00073-y
  35. Viswanadham BVS, Phanikumar BR, Mukherjee RV. Swelling behaviour of a geofiber-reinforced expansive soil. Geotextiles and Geomembranes. 2009;27(1):73–76. Available from: https://dx.doi.org/10.1016/j.geotexmem.2008.06.002


© 2021 Ingle. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.