• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology

Article

Indian Journal of Science and Technology

Year: 2024, Volume: 17, Issue: 9, Pages: 773-779

Original Article

Structural and Spectroscopic Studies of Sm3+ Ions Doped ZnS Nanoparticle in Silica Glass Matrix

Received Date:20 November 2023, Accepted Date:28 January 2024, Published Date:20 February 2024

Abstract

Objective: This report intends to study the structural and spectroscopic properties of Sm3+ doped with ZnS nanoparticles in silica glass. Methods: The research adopted the sol-gel technique for preparing the sample. The physical property of the studied glass sample is examined by different characterization techniques such as Abbe refractometer, X-ray Diffraction (XRD) and Transmission Electron Microscopy (TEM) and Photoluminescence (PL) spectroscopy. Findings: XRD studies confirmed the formation of glassy amorphous nature and TEM studies confirmed that the studied nanoparticles are polycrystalline in nature with a particle size lies between 10-50 nm after annealing at 300 °C. The PL spectra have three emission bands that correspond to 4G5/2→6H5/2, 4G5/2→6H7/2 and 4G5/2→6H9/2 correspondingly at 565 nm, 603 nm and 650 nm with most prominent bands in the orange-red region. Novelty: This research proves that the rare earth element can be successfully doped with semiconductor nanoparticle by using sol-gel technique in silica glass. Consequently, the doped glass can be utilised for producing nearly pure white hue when triggered at 370 nm.

Keywords: Samarium, ZnS, XRD, TEM, PL, CIE Chromaticity

References

  1. Dawngliana KMS, Lalruatpuia, Fanai AL, Rai S. Optical basicity and electronic polarizability of Sm3+-doped silica glass prepared by sol–gel process. Materials Today: Proceedings. 2022;65(Part 5):2572–2577. Available from: https://doi.org/10.1016/j.matpr.2022.04.784
  2. Hien NT, Ca NX, Kien NT, Luyen NT, Do PV, Thanh LD, et al. Structural, optical properties, energy transfer mechanism and quantum cutting of Tb3+ doped ZnS quantum dots. Journal of Physics and Chemistry of Solids. 2020;147:109638. Available from: https://doi.org/10.1016/j.jpcs.2020.109638
  3. Quang VX, Do PV, Ca NX, Thanh LD, Tuyen VP, Tan PM, et al. Role of modifier ion radius in luminescence enhancement from 5D4 level of Tb3+ ion doped alkali-alumino-telluroborate glasses. Journal of Luminescence. 2020;221:117039. Available from: https://doi.org/10.1016/j.jlumin.2020.117039
  4. Sales TO, Amjad RJ, Jacinto C, Dousti MR. Concentration dependent luminescence and cross-relaxation energy transfers in Tb3+ doped fluoroborate glasses. Journal of Luminescence. 2019;205:282–286. Available from: https://doi.org/10.1016/j.jlumin.2018.09.031
  5. Dawngliana KMS, Fanai AL, Rai S. Structural and optical studies of Sm3+-doped silica glass along with TiO2 nanoparticles for photonic applications. Journal of Non-Crystalline Solids. 2023;607:122226. Available from: https://doi.org/10.1016/j.jnoncrysol.2023.122226
  6. Khan MU, Fanai AL, Rai S. Spectroscopic properties of Sm3+ and CdS co- doped in sol-gel silica glass. Indian Journal of Pure and Applied Physics. 2020;58(03):157–163. Available from: https://nopr.niscpr.res.in/bitstream/123456789/54214/1/IJPAP%2058%283%29%20157-163.pdf
  7. Park JY, Lee CG, Seo HW, Jeong DWW, Kim MY, Kim WBY, et al. Structural and optical properties of ZnSe:Eu/ZnS quantum dots depending on interfacial residual europium. Applied Surface Science. 2018;429:225–230. Available from: https://doi.org/10.1016/j.apsusc.2017.09.018
  8. Tiwary CS, Kumbhakar P, Mitra AK, Chattopadhyay K. Synthesis of wurtzite-phase ZnS nanocrystal and its optical properties. Journal of Luminescence. 2009;129(11):1366–1370. Available from: https://doi.org/10.1016/j.jlumin.2009.07.004
  9. Devi CBA, Swapna K, Mahamuda SK, Venkateswarlu M, Prasad MVVKS, Reddy KSRK, et al. Spectroscopic studies and lasing potentialities of Sm3+ ions doped single alkali and mixed alkali fluoro tungsten tellurite glasses. Optics and Laser Technology. 2019;111:176–183. Available from: https://doi.org/10.1016/j.optlastec.2018.09.051
  10. Yasi J, Fusong J, Fuxi G. Optical and other physical properties of Al (PO3)3- containing fluorophosphate glasses. Journal de Physique Colloques. 1982;43(C9):C9-315–C9-318. Available from: https://hal.science/jpa-00222487/document
  11. Haralampieva A, Lozanova IS, Dimitrov V. Optical properties and structure of Bao-V2O5 and Fe2O3-Bao-V2O5 glasses. Journal of the University of Chemical Technology and Metallurgy. 2012;47(4):392–397. Available from: https://journal.uctm.edu/node/j2012-4/6_Veselin_Dimitrov_392-397.pdf
  12. Dieke GH. Spectroscopy & Energy Levels of Rare Earth Compounds. New York, USA. Inter Science. 1968.
  13. Carnall WT, Fields PR, Rajnak K. Spectral Intensities of the Trivalent Lanthanides and Actinides in Solution. II. Pm3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, and Ho3+. The Journal of Chemical Physics. 1968;49(10):4412–4423. Available from: https://doi.org/10.1063/1.1669892
  14. McCamy CS. Correlated color temperature as an explicit function of chromaticity coordinates. Color Research & Application. 1992;17(2):142–144. Available from: https://doi.org/10.1002/col.5080170211
  15. Ambast AK, Goutam J, Som S, Sharma SK. Ca1−x−yDyxKyWO4: A novel near UV converting phosphor for white light emitting diode. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2014;122:93–99. Available from: https://doi.org/10.1016/j.saa.2013.11.032

Copyright

© 2024 Puia & Rai. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)

DON'T MISS OUT!

Subscribe now for latest articles and news.