• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2022, Volume: 15, Issue: 23, Pages: 1159-1165

Original Article

Study of Electrical Output in Photogalvanic Cell for Solar Energy Conversion and Storage: Lauryl Glucoside-Tartrazine-D-Fructose System

Received Date:01 March 2022, Accepted Date:09 May 2022, Published Date:29 June 2022


Objective: The present study is focusing on the role of surfactant in photogalvanic cells and how photons from sunlight can be used as a driving force for energy solar energy conversion and storage. Methods: An H shaped cell was designed for study of electrical output in solar transformations. Electrical circuit was proposed by using of dye, reductant, surfactant, NaOH, double distilled water (DDW), multi-meter, calomel electrode, 250 k roistered, saturated calomel electrode, platinum electrode, carbon pot, resistance key, digital pH meter, microammeter, and 200 W tungsten bulb. A detailed reaction mechanism for the proposed photogalvanic cell (PG Cell) for generating photocurrent and photocurrent has been studied. PG Cells were studied for the solar energy transformation system. Findings: PG Cells were studied by using different parameters via photocurrent, photopotential, conversion efficiency, fill factor and cell performance. The above values are as follows: 388.0 □A, 1141.0 mV, 0.7995%, 0.5389 and 129.0 minutes. Electrical output of the cell has also been observed for tartrazine, D-Fructose and lauryl glucoside systems. Potential at power point, Potential at open circuit, power point of cell (pp) and current at short circuit were also studied. The obtained values are as follows: 1133 mV, 1523 mV, 435.321 and 544mA. Novelty: The photogalvanic is an emerging field of research for conversion and storage of solar energy. This study employs lauryl glucoside-tartrazine-D-fructose system for better electrical output which is also an eco-friendly natural dye system. The observed results are better in cell performance (t1=2) and reduction in cost (INR 9531.38 / USD 125) of the photogalvanic cell for its commercial viability.

Keywords: Photogalvanic cells; solar energy conversion; storage; lauryl glucoside; tartrazine


  1. Keightley RE, Gardner WE. The action of light on the ferrous iodine iodide equilibrium. Journal of the Chemical Society. 1925;127:258–269. Available from: https://doi.org/10.1039/CT9252700258
  2. Rabinowitch E. The Photogalvanic Effect I. The Photochemical Properties of the Thionine‐Iron System. The Journal of Chemical Physics. 1940;8(7):551–559. Available from: https://doi.org/10.1063/1.1750711
  3. Peter D, David R, Hobart N, Litchin N, Dale E, Hall A, et al. Sensitization of an iron-thazinaphotogalvanic cell to the blue: An improved match to the insolation spectrum. Solar Energy. 1977;19(5):567–570. Available from: https://doi.org/10.1016/0038-092X(77)90113-X
  4. Hall DE, Wildes PD, Lichtin NN. Electrodic phenomena at the anode of the totally illuminated, thin layer iron-thionine photogalvanic cell. Journal Electrochemical Sociaty. 1978;125(9):1365–1371. Available from: https://iopscience.iop.org/article/10.1149/1.2131679/meta
  5. Suresh AC, Sadhna K, Sushila L, Rameshwer A. Use of thionine- EDTA system in photogalvanic cell for solar energy conversion. Journalof Photochemical and Photobiological A: Chemistry. 1989;48(1):87092–87095. Available from: https://doi.org/10.1016/1010-6030(89)87092-3
  6. Gangotri KM, Meena RC, Meena R. Use of miscelles in photogalvanic cells for solar energy conversion and storage: cetyl trimethyl ammonium bromide-glucose-toluidine blue system. Journalof Photochemical and Photobiological A: Chemistry. 1999;123(1-3):34–43. Available from: https://doi.org/10.1016/S1010-6030(99)00034-9
  7. Prerna G, Gangotri KM. Studies of the Micellar Effect on Photogalvanics: Solar Energy Conversion and Storage-EDTA-Safranine O-TWEEN-80 System. Arabian Journal of Science and Engineering. 2010;35(1A):19–28. Available from: https://doi.org/10.1021/ef9000709
  8. Gangotri KM, Mohan L. Study of Photogalvanic Effect in Photogalvanic Cell containing Mixed Surfactant (NaLS+CTAB) Research Journal of Chemical Sciences. 2013;3(3):20–25. Available from: http://www.isca.in/rjcs/Archives/v3/i3/4.ISCA-RJCS-2012-227.pdf
  9. Saini SR, Meena SL, Meena RC. Studies of Surfactant in Photogalvanic Cell for Solar Energy Conversion and Storage. Advances in Chemical Engineering and Science. 2017;07(02):125–136. Available from: https://doi.org/10.4236/aces.2017.72010
  10. Wu T, Qin Z, Wang Y, Wu Y, Chen W, Zhang S, et al. The Main Progress of Perovskite Solar Cells in 2020–2021. Nano-Micro Letters. 2021;13(1):152. Available from: https://doi.org/10.1007/s40820-021-00672-w
  11. Zhao C, Tang CG, Seah ZLL, Koh QM, Chua LL, Png RQ, et al. Improving organic photovoltaic cells by forcing electrode work function well beyond onset of Ohmic transition. Nature Communications. 2021;12(1). Available from: https://doi.org/10.1038/s41467-021-22358-y
  12. Chen Y, Du C, Sun L, Fu T, Zhang R, Rong W, et al. Improved optical properties of perovskite solar cells by introducing Ag nanopartices and ITO AR layers. Scientific Reports. 2021;11(1). Available from: https://doi.org/10.1038/s41598-021-93914-1
  13. Koli P, Dayma Y, Pareek RK, Kumar R, Jonwal M. Modified and simplified photogalvanic cells: Solar energy harvesting using bromo cresol green dye with different electrodes and cell dimensions. Journal of Electroanalytical Chemistry. 2022;904:115942. Available from: https://doi.org/10.1016/j.jelechem.2021.115942


© 2022 Rathore et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.