• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology

Article

Indian Journal of Science and Technology

Year: 2023, Volume: 16, Issue: Special Issue 1, Pages: 10-18

Original Article

Study of the Mizo Medicinal Plant, Helicia excelsa on its Phytochemical Components, Antioxidant Property and Antibacterial Activity

Received Date:23 January 2023, Accepted Date:09 June 2023, Published Date:30 July 2023

Abstract

Objectives: Helicia excelsa (Roxb.) Blume (family Proteaceae) is an evergreen tree of ethno-medicinal importance among the Mizo people of India. The study was planned to unveil the chemical and antibacterial properties. Methods: A petroleum ether extract of H. excelsa leaf, prepared by Soxhlet extraction, was used to investigate quantitative phytochemical properties using nine different tests. Qualitative antioxidant tests such as 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical-scavenging, total antioxidant, total flavonoid, total phenolic content and reducing power assays were performed using spectrophotometric analysis. Agar well diffusion method was used to study the antibacterial activity against Gram-positive and Gram-negative species. Findings: Phytochemical detection tests showed that the plant extract contained alkaloids, amino acids, carbohydrates, flavonoids, glycosides, phenols, phytosterols, proteins, and tannins, while saponin was absent. DPPH scavenging assay indicated that the plant extract had an IC50 value of 34.122.51. Reducing power assay indicated a concentration-dependent activity on the substrate, potassium ferricyanide. Total antioxidant content showed 9.090.321 mg/g ascorbic acid equivalent (AAE), while total phenolic and total flavonoid content have 2.430.039 mg/g quercetin equivalent (QE) and 47.62.757 mg/g gallic acid equivalent (GAE), respectively. Positive antibacterial activity was seen against Gram-positive Staphylococcus aureus and Gram-negative Salmonella typhimurium. Novelty: The study showed promising results for H. excelsa as a valuable medicinal plant that contains bioactive compounds and exhibits antibacterial activity.

Keywords: Helicia excelsa; antibacterial activity; antioxidant activity; bioactive compound; medicinal plant

References

  1. Howes MR, Quave CL, Collemare J, Tatsis EC, Twilley D, Lulekal E, et al. Molecules from nature: Reconciling biodiversity conservation and global healthcare imperatives for sustainable use of medicinal plants and fungi. Plants, People, Planet. 2020;2(5):463–481. Available from: https://doi.org/10.1002/ppp3.10138
  2. Anand U, Jacobo-Herrera N, Altemimi A, Lakhssassi N. A Comprehensive Review on Medicinal Plants as Antimicrobial Therapeutics: Potential Avenues of Biocompatible Drug Discovery. Metabolites. 2019;9(11):1–13. Available from: https://doi.org/10.3390/metabo9110258
  3. Reynolds D, Burnham JP, Guillamet CV, Mccabe M, Yuenger V, Betthauser K, et al. The threat of multidrug-resistant/extensively drug-resistant Gram-negative respiratory infections: another pandemic. European Respiratory Review. 2022;31:1–20. Available from: https://doi.org/10.1183/16000617.0068-2022
  4. Vaou N, Stavropoulou E, Voidarou C, Tsigalou C, Bezirtzoglou E. Towards Advances in Medicinal Plant Antimicrobial Activity: A Review Study on Challenges and Future Perspectives. Microorganisms. 2021;9(10):1–28. Available from: https://doi.org/10.3390/microorganisms9102041
  5. Lalawmpuii PC, Malsawmtluangi C, Vanlalruata R, Kakoti BB. Evaluation of anti-inflammatory activity of Helicia nilagirica Bedd on cotton pellet-induced granuloma in rats. International Journal of Pharmacy and Pharmaceutical Sciences. 2016;8(7):455–456. Available from: https://innovareacademics.in/journals/index.php/ijpps/article/view/10844/5290
  6. Sharma HK, Chhangte L, Dolui AK. Traditional medicinal plants in Mizoram, India. Fitoterapia. 2001;72(2):146–161. Available from: https://doi.org/10.1016/S0367-326X(00)00278-1
  7. Jamal AA, MAY. Phytochemical analysis of some herbal medicines. Medbiotech Journal. 2018;2(2):82–84. Available from: https://doi.org/10.22034/MBT.2018.76928
  8. Singleton VL, Rossi JA. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. American Journal of Enology and Viticulture. 1965;16(3):144–158. Available from: https://www.ajevonline.org/content/16/3/144
  9. Zhishen J, Mengcheng T, Jianming W. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry. 1999;64(4):555–559. Available from: https://doi.org/10.1016/S0308-8146(98)00102-2
  10. Devillers J, Steiman R, Seigle-Murandi F. The usefulness of the agar-well diffusion method for assessing chemical toxicity to bacteria and fungi. Chemosphere. 1989;19(10-11):1693–1700. Available from: https://doi.org/10.1016/0045-6535(89)90512-2
  11. Saini N, Lather V, Gahlawat SK. Exploring Phytochemicals from Himalayan Medicinal Plants as Novel Therapeutic Agents. Anti-Cancer Agents in Medicinal Chemistry. 2022;22(9):1674–1698. Available from: https://doi.org/10.2174/1871520621666211015141020
  12. Selim MSM, Abdelhamid SA, Mohamed SS. Secondary metabolites and biodiversity of actinomycetes. Journal of Genetic Engineering and Biotechnology. 2021;19(72):1–13. Available from: https://doi.org/10.1186/s43141-021-00156-9
  13. Checa J, Aran JM. Reactive Oxygen Species: Drivers of Physiological and Pathological Processes. Journal of Inflammation Research. 2020;2020(13):1057–1073. Available from: https://doi.org/10.2147%2FJIR.S275595
  14. Juan CA, Lastra JMPDL, Plou FJ, Pérez-Lebeña EJ. The Chemistry of Reactive Oxygen Species (ROS) Revisited: Outlining Their Role in Biological Macromolecules (DNA, Lipids and Proteins) and Induced Pathologies. International Journal of Molecular Sciences. 2021;22(9):1–21. Available from: https://doi.org/10.3390/ijms22094642
  15. Ali SS, Ahsan H, Zia MK, Siddiqui T, Khan FH. Understanding oxidants and antioxidants: Classical team with new players. Journal of Food Biochemistry. 2020;44(3):e13145. Available from: https://doi.org/10.1111/jfbc.13145
  16. Xu X, Liu A, Hu S, Ares I, Martínez-Larrañaga MRR, Wang X, et al. Synthetic phenolic antioxidants: Metabolism, hazards and mechanism of action. Food Chemistry. 2021;353:129488. Available from: https://doi.org/10.1016/j.foodchem.2021.129488
  17. Uddin TM, Chakraborty AJ, Khusro A, Zidan BRM, Mitra S, Emran TB, et al. Antibiotic resistance in microbes: History, mechanisms, therapeutic strategies and future prospects. Journal of Infection and Public Health. 2021;14(12):1750–1766. Available from: https://doi.org/10.1016/j.jiph.2021.10.020
  18. Mancuso G, Midiri A, Gerace E, Biondo C. Bacterial Antibiotic Resistance: The Most Critical Pathogens. Pathogens. 2021;10(10):1–14. Available from: https://doi.org/10.3390/pathogens10101310
  19. Huang W, Wang Y, Tian W, Cui X, Tu P, Li J, et al. Biosynthesis Investigations of Terpenoid, Alkaloid, and Flavonoid Antimicrobial Agents Derived from Medicinal Plants. Antibiotics. 2022;11(10):1–32. Available from: https://doi.org/10.3390/antibiotics11101380

Copyright

© 2023 Tlau et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)

DON'T MISS OUT!

Subscribe now for latest articles and news.