• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2024, Volume: 17, Issue: 5, Pages: 418-425

Original Article

Studying the Absorption and Fluorescence Parameters of Ho: YAP Laser Using the Judd-Oflet Model

Received Date:12 November 2023, Accepted Date:23 December 2023, Published Date:23 January 2024


Objectives: Study and find the absorption and fluorescence parameters for the Ho: YAP laser crystal, such as branching ratios, intensity parameters, oscillation strength, fluorescence line strength, absorption line strength, the spontaneous emission factor, the time life of the upper irritated level, the emission cross-section, and the absorption cross-section and prove that this laser is Ho: YAP laser. Method: Absorption and fluorescence parameters are calculated by employing the equations of the Judd-Oflet model and using the absorption coefficient to calculate the area under the curve. Findings: The properties of the compelling medium were calculated theoretically using the Judd-Oflet Model. These include branching ratios β2 = 0.27, β3 = 0.72, intensity parameters Ω2=1.41*10-20 cm2 Ω4=2.91*10-20 cm2, Ω6= 1.72*10-20 cm2, oscillation strength 1.48*10-6, fluorescence line strength Sf1 =0, Sf2 = 3.24*10-23, Sf3 = 4.9*10-23, absorption line strength 3.2439*10-23, the spontaneous emission factor 167 s-1, and the time life of the upper irritated level 5.99 ms, the emission cross-2.239*10-18 cm2, the absorption cross-section 0.92*10-20 cm2, these values are evidence that the active medium to be studied is Ho: YAP. Also, the ratio of the probability of spontaneous emission to stimulated emission was calculated, which is much less than one, which indicates that the laser system operates in this medium, and a laser is emitted through it. Novelty: In this article, we succeeded in using a mathematical model to calculate the properties of absorption and fluorescence, which are of great importance in laser work, instead of experimental work that could expose the crystal to damage and also require money, effort, and time.

Keywords: Judd-Oflet Model, Ho: YAP laser, Absorption Parameters, Fluorescence Parameters, absorption coefficient, intensity parameters


  1. Schneckenburger H. Laser Application in Life Sciences. International Journal of Molecular Sciences. 2023;24(10):1–4. Available from: https://doi.org/10.3390/ijms24108526
  2. Pupeikis J, Hu W, Willenberg B, Mehendale M, Antonelli GA, Phillips CR, et al. Efficient pump-probe sampling with a single-cavity dual-comb laser: Application in ultrafast photoacoustics. Photoacoustics. 2023;29:1–7. Available from: https://doi.org/10.1016/j.pacs.2022.100439
  3. Liu Y, Wang Y, Wang M, Shen H, Huang C, Wang X, et al. Structure and spectral properties of Dy3+ doped CaYAlO4 single crystal. Scientific Reports. 2023;13(1):1–10. Available from: https://doi.org/10.1038/s41598-023-33366-x
  4. Geisler AN, Eber A, Kim K, Arndt KA. Lasers for the treatment of eyebrow microblading and cosmetic tattoo pigment: a review of the literature. Lasers in Medical Science. 2023;38(1). Available from: https://doi.org/10.1007/s10103-023-03921-z
  5. Pan Y, Liu B, Liu J, Song Q, Xu J, Li D, et al. Spectroscopic properties and continuous-wave laser operation of Nd: Ca0.7La0.3Mg0.3Al11.7O19 crystal. Optical Materials Express. 2020;10(5):1255–1263. Available from: https://doi.org/10.1364/OME.389014
  6. Vijayasri D, Rudramamba KS, Srikanth T, Reddy NM, Nakka M, Pratyusha S, et al. Spectroscopic features of Tb3+ doped strontium zinc borate glasses for green laser applications. Journal of Molecular Structure. 2023;1274(Part 1):134514. Available from: https://doi.org/10.1016/j.molstruc.2022.134514
  7. Ciric A, Marciniak Ł, Dramićanin MD. Self-referenced method for the Judd-Ofelt parametrization of the Eu3+ excitation spectrum. Scientific Reports. 2022;12:1–10. Available from: https://doi.org/10.1038/s41598-021-04651-4
  8. Huang H, Ruan K, Hu H, Deng J, Huang J, Weng W, et al. Above 10 W 2130 nm Ho:YAP laser intra-cavity pumped with composite YAP/Tm:YAP laser. Optics & Laser Technology. 2021;136:106733. Available from: https://doi.org/10.1016/j.optlastec.2020.106733
  9. Sun L, Su S, Xu Q, Lu J, Xu K, Lei Z, et al. Preparation, spectral properties and Judd-Ofelt analysis of Ho3+:YPO4 crystal. Journal of Luminescence. 2023;263:120062. Available from: https://doi.org/10.1016/j.jlumin.2023.120062
  10. Xu J, Liu J, Guo J, Li D, Liu P, Wang X, et al. Growth, spectroscopy and CW laser operation of Ho3+ doped CaY0.9Gd0.1AlO4 single crystal. Journal of Luminescence. 2023;255:119594. Available from: https://doi.org/10.1016/j.jlumin.2022.119594
  11. Reisfeld R, Jorgensen CK. Laser and Excited States of Rare Earth, Inorganic Chemistry Concepts. (Vol. INORGANIC, volume 1, p. VIII, 228) Springer Berlin, Heidelberg. 1977.
  12. Koechner W. Solid-State Laser Engineering, Springer Series in Optical Sciences. (Vol. 1, p. XVI, 750) New York, NY, USA. Springer. 2006.
  13. Hecht J. Short history of laser development. Applied Optics. 2010;49(25):F99–F122. Available from: https://doi.org/10.1364/AO.49.000F99
  14. Kalisky Y, Labbe C, Waichman K, Kravchik L, Rachum U, Deng P, et al. Passively Q-switched diode-pumped Yb:YAG laser using Cr4+-doped garnets. Optical Materials. 2002;19(4):403–413. Available from: https://doi.org/10.1016/S0925-3467(02)00003-4
  15. Koechner W, Bass M. Solid-State Lasers: A Graduate Text, Advanced Texts in Physics (1). (p. XI, 409) New York, NY, USA. Springer. 2003.
  16. Carnall WT, Fields PR, Rajnak K. Electronic Energy Levels in the Trivalent Lanthanide Aquo Ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+. The Journal of Chemical Physics. 1968;49(10):4424–4442. Available from: https://doi.org/10.1063/1.1669893
  17. Dobretsova E, Zhmykhov V, Kuznetsov S, Chikulina I, Nikova M, Tarala V, et al. The Influence of the Sc3+ Dopant on the Transmittance of (Y, Er)3Al5O12 Ceramics. Dalton Transactions. 2021;50(40):14252–14256. Available from: https://doi.org/10.1039/D1DT02419A
  18. Shannon RD, Shannon RC, Medenbach O, Fischer RX. Refractive Index and Dispersion of Fluorides and Oxides. Journal of Physical and Chemical Reference Data. 2002;31(4):931–970. Available from: https://doi.org/10.1063/1.1497384
  19. Hassan AA, Wahid NA, Hammod HY. Numerical modeling of passively Q-switched Nd: YAG lasers with Cr+4: YAG as a saturable absorber. Journal of Xidian University. 2021;15(2):36–42. Available from: https://doi.org/10.37896/jxu15.2/005
  20. Hassan AA, Wahid NA, Hammod HY. Effect of Some Design Parameters on Pumping Threshold Power of Nd:YAG Laser. Journal of Xidian University. 2021;15(2):31–35. Available from: https://doi.org/10.37896/jxu15.2/004
  21. Sulc J, Němec M, Jelínek M, Jelínková H, Kubeček V, Nejezchleb K, et al. Anisotropy of spectroscopic and laser properties of Ho: YAP crystal. In: Solid State Lasers XXXI: Technology and Devices. (Vol. 11980) 2022.
  22. Zhang H, Sun D, Luo J, Cao S, Cheng M, Zhang Q, et al. Growth and spectroscopic investigations of Yb,Ho: YAP and Yb,Ho,Pr:YAP laser crystals. Journal of Luminescence. 2015;158:215–219. Available from: https://doi.org/10.1016/j.jlumin.2014.10.003


© 2024 Hassan et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.