• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2023, Volume: 16, Issue: 47, Pages: 4561-4568

Original Article

Supervised Learning-Based Prediction and Analysis of Amharic Twitter Data

Received Date:15 March 2023, Accepted Date:19 July 2023, Published Date:30 December 2023


Objectives: This study aims to prepare a corpus and explore sentiment analysis in the Amharic language, which is increasingly used due to the growth of both the language and the Internet. Methods: The study acquired 23,646 Amharic tweets from Twitter using the Twitter API, cleaned and normalized the text through preprocessing, and manually annotated the data as positive, negative, or neutral by three annotators. The study utilized a multi-scale sentiment analysis approach to experimentally evaluate the classifier's performance and compare different ML and DL classifiers. Findings: The study found that sentiment analysis in the Amharic language in this dataset showed that the KNN classifier could classify texts with an accuracy of 76% and 90% accuracy using the CNN deep learning classifier. Novelty: This study contributes to the field of sentiment analysis by addressing the scarcity of an Amharic-language dataset specifically tailored for sentiment analysis purposes. Our approach involves filling this critical research gap by developing a new dataset. Subsequently, we employ machine learning and deep learning classifiers to assess the viability of this dataset for performing multi-class sentiment analysis tasks in the Amharic language.

Keywords: Amharic, Sentiment Analysis, Multi­class, Machine Learning, Deep Learning Classifier


  1. Puri S, Singh SP. An Efficient Hindi Text Classification Model Using SVM. In: Computing and Network Sustainability, Lecture Notes in Networks and Systems. (Vol. 75, pp. 227-237) Springer Singapore. 2019.
  2. Alayba AM, Palade V, England M, Iqbal R. A Combined CNN and LSTM Model for Arabic Sentiment Analysis. In: International Cross-Domain Conference for Machine Learning and Knowledge Extraction, CD-MAKE 2018, Lecture Notes in Computer Science. Springer, Cham. 11015:179–191.
  3. Xue W, Li T. Aspect Based Sentiment Analysis with Gated Convolutional Networks. In: Gurevych I, Miyao Y., eds. Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). (Vol. 1, pp. 2514-2537) Association for Computational Linguistics. 2018.
  4. Al-Ayyoub M, Khamaiseh AA, Jararweh Y, Al-Kabi MN. A comprehensive survey of arabic sentiment analysis. Information Processing & Management. 2019;56(2):320–342. Available from: https://doi.org/10.1016/j.ipm.2018.07.006
  5. Eberhard DM, Simons GF, Fennig C. Ethnologue: Languages of the World (25). 2022.
  6. Endalie D, Haile G. Automated Amharic News Categorization Using Deep Learning Models. Computational Intelligence and Neuroscience. 2021;2021:1–9. Available from: https://doi.org/10.1155/2021/3774607
  7. Sachdeva SJ, Abhishek R, Annapurna VK. Comparing Machine Learning Techniques for Sentiment Analysis. International Journal of Advanced Research in Computer and Communication Engineering. 2019;8(4):67–71. Available from: https://doi.org/10.17148/ijarcce.2019.8410
  8. Yuan J, Wu Y, Lu X, Zhao Y, Qin B, Liu T. Recent advances in deep learning based sentiment analysis. Science China Technological Sciences. 2020;63(10):1947–1970. Available from: https://doi.org/10.1007/s11431-020-1634-3
  9. Gupta I, Joshi N. Enhanced Twitter Sentiment Analysis Using Hybrid Approach and by Accounting Local Contextual Semantic. Journal of Intelligent Systems. 2019;29(1):1611–1625. Available from: https://doi.org/10.1515/jisys-2019-0106
  10. Alemneh GN, Rauber A, Atnafu S. Negation handling for Amharic sentiment classification. In: Cunha R, Shaikh S, Varis E, Georgi R, Tsai A, Anastasopoulos A, et al., eds. Proceedings of the The Fourth Widening Natural Language Processing Workshop. (Vol. 2020, pp. 4-6) Association for Computational Linguistics. 2020.
  11. Tesfagergish SG, Damaševičius R, Kapočiūtė-Dzikienė J. Deep Learning-Based Sentiment Classification of Social Network Texts in Amharic Language. In: KZ, LB., eds. International Conference on ICT Innovations, 2022: Reshaping the Future Towards a New Normal , Communications in Computer and Information Science. (Vol. 1740, pp. 63-75) Springer, Cham. 2022.
  12. Mossie Z, Wang JH. Social Network Hate Speech Detection for Amharic Language. Computer Science & Information Technology. 2018;p. 41–55. Available from: https://airccj.org/CSCP/vol8/csit88604.pdf
  13. Endalie D, Haile G. Hybrid Feature Selection for Amharic News Document Classification. Mathematical Problems in Engineering. 2021;2021:1–8. Available from: https://doi.org/10.1155/2021/5516262
  14. Mihret M, Atinaf M. Sentiment Analysis Model for Opinionated Awngi Text. In: 2019 IEEE AFRICON. Accra, Ghana, 25-27 September 2019. IEEE. .
  15. Abeje BT, Salau AO, Ebabu HA, Ayalew AM. Comparative Analysis of Deep Learning Models for Aspect Level Amharic News Sentiment Analysis. In: 2022 International Conference on Decision Aid Sciences and Applications (DASA). Chiangrai, Thailand, 23-25 March 2022. IEEE. p. 1628–1661.
  16. Neshir G, Rauber A, Atnafu S. Meta-Learner for Amharic Sentiment Classification. Applied Sciences. 2021;11(18):1–19. Available from: https://doi.org/10.3390/app11188489
  17. Camacho-Collados J, Pilehvar MT, Collier N, Navigli R. SemEval-2017 Task 2: Multilingual and Cross-lingual Semantic Word Similarity. In: Bethard S, Carpuat M, Apidianaki M, Mohammad SM, Cer D, Jurgens D., eds. Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017). (pp. 15-26) Association for Computational Linguistics. 2017.


© 2023 Alemayehu et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.