• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2020, Volume: 13, Issue: 13, Pages: 1401-1411

Original Article

Texture based FACE recognition using GLCM and LBP schemes

Received Date:03 April 2020, Accepted Date:23 April 2020, Published Date:22 May 2020


Objectives: Automatic face recognition has been an important area of biometric authentication and verification system in various applications including crime detection, access control, video surveillance, tracking service and other related areas. Methods/Statistical analysis: In this study, we present Grey Level Co-occurrence Matrix (GLCM) over Local Binary Patterns (LBP) named as GOL texture feature technique for face classification. The experiments have been conducted on AT & T Cambridge Laboratory face images also called (ORL-faces) and Georgia Tech (GT-faces) databases respectively. Findings: We performed a comparative analysis of GLCM and LBP method separately and results showed that the proposed GOL method outperformed in terms of average sensitivity, average specificity, and retrieval time. These findings show efficacy of our proposed system. 

Keywords: GLCM; LBP; Face recognition; Feature extraction


  1. Numitha MN, Noorain T, Amulya S, Patil, Navyashree HV, Nagalakshmi TS, et al. Face Recognition and IoT Based Smart Lock Access System. International Journal of Scientific Research in Computer Science, Engineering and Information Technology (IJSRCSEIT). 2018;4(6):701–704.
  2. Kaur P, Krishan K, Sharma SK, Kanchan T. Facial-recognition algorithms: A literature review. Medicine, Science and the Law. 2020;60(2):131–139. doi: 10.1177/0025802419893168
  3. Hassaballah M, Aly S. Face recognition: challenges, achievements and future directions. IET Computer Vision. 2015;9(4):614–626. doi: 10.1049/iet-cvi.2014.0084
  4. Zhao W, Chellappa R, Phillips PJ, Rosenfeld A. Face Recognition: A Literature Survey. ACM Computing Surveys. 2003;35:399–458.
  5. Lal M, Kumar K, Hussain R, Maitlo A. Hidayatullah Shaikh. Study of Face Recognition Techniques: A Survey. J] International Journal of Advanced Computer Science and Applications. 2018;9(6):42–49.
  6. Ahonen T, Hadid A, Pietikainen M. Face Description with Local Binary Patterns: Application to Face Recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2006;28(12):2037–2041. doi: 10.1109/tpami.2006.244
  7. Li SZ, Chu R, Liao S, Zhang L. Illumination Invariant Face Recognition Using Near-Infrared Images. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2007;29(4):627–639. doi: 10.1109/tpami.2007.1014
  8. Hadid A, Pietikainen M. Combining Motion and Appearance for Gender Classification from Video Sequences. 19th International Conference on Pattern Recognition. 2008;p. 1–4.
  9. Pham-Ngoc PT, Jo KH. Color- Based Face Detection using Combination of Modified Local Binary Pattern and Embedded Hidden Markov Models. International Joint Conference. 2006;p. 5598–5603.
  10. Eleyan A, Demirel, Hasan. Co-occurrence Based Statistical Approach for Face Recognition. 24th International Symposium on Computer and Information Sciences. 2009;p. 611–515.
  11. Baek J, Kim J, Kim E. Part-based Face Detection using SLBP. 14th International Conference on Control, Automation and Systems. 2014;p. 1501–1503.
  12. Liao S, Zhu X, Lei Z. Learning Multi-scale BlockLocal Binary Patterns for Face Recognition. Advances in Biometrics Springer Book. 2007;p. 828–837.
  13. Kafai M, An L, Bhanu B. Reference Face Graph for Face Recognition. IEEE Transactions on Information Forensics and Security. 2014;9(12):2132–2143. doi: 10.1109/tifs.2014.2359548
  14. Xie S, Hu H. Facial expression recognition with FRR-CNN. Electronics Letters. 2017;53(4):235–237.
  15. Corneanu CA, Simon MO, Cohn JF, Guerrero SE. Survey on RGB, 3D, Thermal, and Multimodal Approaches for Facial Expression Recognition: History, Trends, and Affect-Related Applications. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2016;38(8):1548–1568. doi: 10.1109/tpami.2016.2515606
  16. Zhang K, Huang Y, Du Y, Wang L. Facial expression recognition based on deep evolutional spatial-temporal networks. IEEE Transactions on Image Processing. 2017;26(9):4193.
  17. Zhang T, Zheng W, Cui Z, Zong Y, Yan J, Yan K. A Deep Neural Network-Driven Feature Learning Method for Multi-view Facial Expression Recognition. IEEE Transactions on Multimedia. 2016;18(12):2528–2536. doi: 10.1109/tmm.2016.2598092
  18. Pali V, Goswami S, Bhaiya LP. An Extensive Survey on Feature Extraction Techniques for Facial Image Processing. International Conference on Computational Intelligence and Communication Networks. 2014;p. 142–148.
  19. Ojala T, Pietikäinen M, Harwood D. A comparative study of texture measures with classification based on featured distributions. Pattern Recognition. 1996;29(1):51–59. doi: 10.1016/0031-3203(95)00067-4
  20. Haralick RM, Shanmugam K, Dinstein I. Textural Features for Image Classification. IEEE Transactions on Systems, Man, and Cybernetics. 1973;SMC-3(6):610–621. doi: 10.1109/tsmc.1973.4309314


Copyright: © 2020 Kumar, Wagan, Khuhro, Umrani, Chhajro, Hafeez, Laghari. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.