• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2024, Volume: 17, Issue: 16, Pages: 1695-1701

Original Article

The Euler Characteristic of Parabolic Sheaves

Received Date:20 February 2024, Accepted Date:21 March 2024, Published Date:19 April 2024


Objectives: The primary aim of this study is to explicitly determine the Euler characteristic of the parabolic sheaves with rank 2 on a smooth projective algebraic surface defined over complex numbers with the smooth irreducible parabolic divisor . Methods: The computation of the parabolic Hilbert polynomial involves the use of -filtered sheaves on a smooth projective surface , with weights corresponding to the points where the filtration jumps. The Riemann-Roch theorem and Chern class computation have also been used. Findings: The study provides explicit computations of the parabolic Hilbert polynomial as well as the parabolic Chern classes for parabolic rank 2 bundles. Novelty: This work contributes to the understanding of parabolic sheaves on smooth projective surfaces, bridging the gap between different constructions of stable bundles. The explicit computation of the parabolic Hilbert polynomial for rank 2 bundles adds valuable insights to the study of moduli spaces of parabolic bundles.

Keywords: Euler characteristic, Hilbert polynomial, Chern class, Parabolic sheaves, Smooth projective algebraic surface


  1. Huybrechts D, Lehn M. The Geometry of Moduli Spaces of Sheaves. (pp. 1-281) Cambridge University Press. 2010.
  2. Maruyama M, Yokogawa K. Moduli of parabolic stable sheaves. Mathematische Annalen. 1992;293(1):77–99. Available from: https://dx.doi.org/10.1007/bf01444704
  3. Balaji V, Dey A, Parthasarathi R. Parabolic bundles on algebraic surfaces I — The Donaldson-Uhlenbeck compactification. Proceedings Mathematical Sciences. 2008;118(1):43–79. Available from: https://dx.doi.org/10.1007/s12044-008-0004-x
  4. Langer A. On algebraic Chern classes of flat vector bundles. manuscripta mathematica. 2023;p. 1–29. Available from: https://doi.org/10.1007/s00229-023-01518-y
  5. Potier JL. Lectures on Vector Bundles, Cambridge studies in advanced mathematics. (pp. 1-260) 1997.
  6. Hartshorne R. Algebraic geometry, Graduate Texts in Mathematics. (Vol. 52, pp. XVI, 1-496) New York, USA. Springer-Verlag. 1977.


© 2024 Parthasarathi & Gargi. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.