• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2021, Volume: 14, Issue: 20, Pages: 1647-1660

Original Article

The influence of adding alccofine and nano-silica on the behavior of concrete at elevated temperatures

Received Date:22 April 2021, Accepted Date:21 May 2021, Published Date:04 June 2021


Objectives: To investigate the influence of adding alccofine and nano-silica as an additive on the behavior of concrete at elevated temperatures. Methods: Concrete specimens with and without nano-silica and alccofine were heated to temperatures of 200ºC to 1000ºC for 4, 8, and 12hours. In this study, relative compressive strength and ultrasonic pulse velocity were investigated. Using regression analysis, a relation between compressive strength and temperature was derived and compared with other relations. Findings: The outcomes demonstrated that elevated temperatures degraded the microstructure of concrete and reduced the relative compressive strength and ultrasonic pulse velocity. The percentage of degradation was higher in nano-silica and alccofine concrete at 1000ºC. The proposed relation was found accurate compared to other relations. Novelty/Applications: As the temperature increases above 600ºC, control mixes performed better than the concrete mixes using nano-silica and alccofine.


concrete, alccofine, nano­silica, fire resistance, ultrasonic pulse velocity


  1. Alhasanat MB, Qadi ANA, Khashman OAA, Dahamsheh A. Scanning Electron Microscopic Evaluation of Self-Compacting Concrete Spalling at Elevated Temperatures. American Journal of Engineering and Applied Sciences. 2016;9(1):119–127. Available from: https://dx.doi.org/10.3844/ajeassp.2016.119.127
  2. Metev SM, Veiko VP. Laser-assisted microtechnology . Springer. 1998.
  3. Solís-Carcaño R, Moreno EI. Evaluation of concrete made with crushed limestone aggregate based on ultrasonic pulse velocity. Construction and Building Materials. 2008;22(6):1225–1231. Available from: https://dx.doi.org/10.1016/j.conbuildmat.2007.01.014
  4. Wuryanti W. Determination residual strength concrete of post-fire using ultrasonic pulse velocity. IOP Conference Series: Materials Science and Engineering. 2019;620(1). Available from: https://dx.doi.org/10.1088/1757-899x/620/1/012064
  5. Muthadhi A, Kothandaraman S. Experimental investigations on polymer-modified concrete subjected to elevated temperatures. Materials and Structures. 2014;47:977–986. Available from: https://dx.doi.org/10.1617/s11527-013-0107-4
  6. Kirchhof LD, Lorenzi A, Filho LCPS. Assessment of concrete residual strength at high temperatures using ultrasonic pulse velocity. The e-Journal of Nondestructive Testing. 2015;20(7):1–9. Available from: https://www.ndt.net/article/ndtnet/2015/1_Lari.pdf
  7. Cruz-Hernández RA, Zapata-Orduz LE, Quintero-Ortiz LA, Herrera-Ortiz JO, , , et al. Physical and mechanical characterization of concrete exposed to elevated temperatures by using ultrasonic pulse velocity. Revista Facultad de Ingeniería Universidad de Antioquia. 2015;2015(75):108–129. Available from: https://dx.doi.org/10.17533/udea.redin.n75a12
  8. Belaribi H, Mellas M, Rahmani F. The relationship between the compressive strength and ultrasonic pulse velocity concrete with fibers exposed to high temperatures. International Journal of Energetica. 2016;3(1):31–36. Available from: https://dx.doi.org/10.47238/ijeca.v3i1.63
  9. Gavela S, Nikoloutsopoulos N, Papadakos G, Sotiropoulou A. Combination of compressive strength test and ultrasonic pulse velocity test with acceptable uncertainty. Material Design & Processing Communication. 2020;(e171). Available from: https://doi.org/10.1002/mdp2.171
  10. Hwang E, Kim G, Choe G, Yoon M, Gucunski N, Nam J. Evaluation of concrete degradation depending on heating conditions by ultrasonic pulse velocity. Construction and Building Materials. 2018;171:511–520. Available from: https://dx.doi.org/10.1016/j.conbuildmat.2018.03.178
  11. Ghosh R, Sagar SP, Kumar A, Gupta SK, Kumar S. Estimation of geopolymer concrete strength from ultrasonic pulse velocity (UPV) using high power pulser. Journal of Building Engineering. 2018;16:39–44. Available from: https://dx.doi.org/10.1016/j.jobe.2017.12.009
  12. Gyu-Yong KIM, Young-Sun KIM, Tae-Gyu LE. Mechanical properties of high-strength concrete subjected to high temperature by stressed test. Transactions of Nonferrous metals society of China. 2009;19(1):128–133. Available from: https://doi.org/10.1016/S1003-6326(10)60260-9
  13. Raza SS, Qureshi LA, Ali B, Raza A, Khan MM, Salahuddin H. Mechanical Properties of HybridSteel–Glass Fiber-Reinforced Reactive Powder Concrete AfterExposure to Elevated Temperatures. Arabian Journal for Science and Engineering. 2020;45(5):4285–4300. Available from: https://dx.doi.org/10.1007/s13369-020-04435-4
  14. Park SJ, Yim HJ, Kwak HG. Effects of post-fire curing conditions on the restoration of material properties of fire-damaged concrete. Construction and Building Materials. 2015;99:90–98. Available from: https://doi.org/10.1016/j.conbuildmat.2015.09.015
  15. Kodur V. Properties of Concrete at Elevated Temperatures. ISRN Civil Engineering. 2014;2014:1–15. Available from: https://dx.doi.org/10.1155/2014/468510
  16. Hager. Behaviour of cement concrete at high temperature. Bulletin of the polish academy of sciences, Technical sciences. 2003;61(1):1–10. Available from: https://doi.org/10.2478/bpasts-2013-0013
  17. Hassan A, Arif M, Shariq M. Mechanical Behaviour and Microstructural Investigation of Geopolymer Concrete After Exposure to Elevated Temperatures. Arabian Journal for Science and Engineering. 2020;45(5):3843–3861. Available from: https://dx.doi.org/10.1007/s13369-019-04269-9


© 2021 Ashwini & Rao. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.