• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2024, Volume: 17, Issue: 11, Pages: 1051-1058

Original Article

Twitter Sentiments and Opinions Analysis of COVID-19 Vaccine Regarding Effectiveness of Vaccine

Received Date:06 November 2023, Accepted Date:14 January 2024, Published Date:05 March 2024


Objective: To make an extensive analysis of sentiment within the discourse surrounding COVID-19 vaccines on Twitter, employing Natural Language Processing (NLP) methodologies. Method: The research methodology encompasses data collection via the Twitter API, followed by sentiment analysis facilitated by the TextBlob library. Pre-processing stages are integrated to cleanse and standardize the Twitter data. Subsequently, sentiment analysis categorizes tweets into positive, negative, and neutral sentiments based on polarity scores. Findings: The findings, grounded in a dataset spanning from March 1, 2022, to April 30, 2022, comprising 61,934 tweets, unveil that 45.0% of tweets conveyed positive sentiment, 17.3% exhibited negativity, and 37.7% maintained neutrality. Moreover, an exploration of tweet subjectivity revealed that 70.1% of the content expressed subjectivity, while 29.9% conveyed objectivity. The research is augmented with visual representations, including word clouds and subjectivity-polarity graphs, that offer a more intuitive understanding of sentiment trends. Novelty: This study contributes to the expanding landscape of sentiment analysis and its application within the context of public health crises, empowering stakeholders with valuable knowledge to enhance vaccine acceptance and effectiveness. The tool used “Tweet Downloader” in data collection makes this study different from other reviewed studies. Keywords: COVID-19 vaccine, Twitter sentiment analysis, Public perception, Natural Language Processing (NLP), Social media data


  1. Medford RJ, Saleh SN, Sumarsono A, Perl TM, Lehmann CU. An “Infodemic”: Leveraging High-Volume Twitter Data to Understand Early Public Sentiment for the Coronavirus Disease 2019 Outbreak. Open Forum Infectious Diseases. 2020;7(7):1–9. Available from: https://doi.org/10.1093/ofid/ofaa258
  2. Yin H, Yang S, Li J. Detecting Topic and Sentiment Dynamics Due to COVID-19 Pandemic Using Social Media. In: International Conference on Advanced Data Mining and Applications, ADMA 2020, Lecture Notes in Computer Science . (Vol. 12447, pp. 610-623) Springer, Cham. 2021.
  3. Shamrat FM, Chakraborty S, Imran MM, Muna JN, Billah MM, Das P, et al. Sentiment analysis on twitter tweets about COVID-19 vaccines using NLP and supervised KNN classification algorithm. Indonesian Journal of Electrical Engineering and Computer Science. 2021;23(1):463–470. Available from: http://doi.org/10.11591/ijeecs.v23.i1.pp463-470
  4. Agarwal B, Nayak R, Mittal N, Patnaik S. Deep learning-based approaches for sentiment analysis, Algorithms for Intelligent Systems (1). (p. XII, 319) Singapore. Springer . 2020.
  5. Alam KN, Khan MS, Dhruba AR, Khan MM, Al-Amri JF, Masud M, et al. Deep Learning-Based Sentiment Analysis of COVID-19 Vaccination Responses from Twitter Data. Computational and Mathematical Methods in Medicine. 2021;2021:1–15. Available from: https://doi.org/10.1155/2021/4321131
  6. Dubey AD. Public Sentiment Analysis of COVID-19 Vaccination Drive in India. SSRN Electronic Journal. 2021;p. 1–5. Available from: https://dx.doi.org/10.2139/ssrn.3772401
  7. Pristiyono, Ritonga M, Ihsan MAA, Anjar A, Rambe FH. Sentiment analysis of COVID-19 vaccine in Indonesia using Naïve Bayes Algorithm. In: Annual Conference on Computer Science and Engineering Technology (AC2SET) , IOP Conference Series: Materials Science and Engineering. (Vol. 1088, pp. 1-6) IOP Publishing. 2021.
  8. Yousefinaghani S, Dara R, Mubareka S, Papadopoulos A, Sharif S. An analysis of COVID-19 vaccine sentiments and opinions on Twitter. International Journal of Infectious Diseases. 2021;108:256–262. Available from: https://doi.org/10.1016/j.ijid.2021.05.059
  9. Ramadhan NG, Adhinata FD. Sentiment analysis on vaccine COVID-19 using word count and Gaussian Naïve Bayes. Indonesian Journal of Electrical Engineering and Computer Science. 2022;26(3):1765–1772. Available from: http://doi.org/10.11591/ijeecs.v26.i3.pp1765-1772
  10. Ansari MTJ, Khan NA. Worldwide COVID-19 Vaccines Sentiment Analysis Through Twitter Content. Electronic Journal of General Medicine. 2021;18(6):1–10. Available from: https://doi.org/10.29333/ejgm/11316
  11. Verma R, Chhabra A, Gupta A. A statistical analysis of tweets on covid-19 vaccine hesitancy utilizing opinion mining: an Indian perspective. Social Network Analysis and Mining. 2022;13(1):1–12. Available from: https://doi.org/10.1007/s13278-022-01015-2
  12. Chinnasamy P, Suresh V, Ramprathap K, Jebamani BJA, Rao KS, Kranthi MS. COVID-19 vaccine sentiment analysis using public opinions on Twitter. Materials Today: Proceedings. 2022;64(Part 1):448–451. Available from: https://doi.org/10.1016/j.matpr.2022.04.809


© 2024 Kumari et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.