• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology

Article

Indian Journal of Science and Technology

Year: 2020, Volume: 13, Issue: 28, Pages: 2892-2901

Original Article

Utilization of wood industrial wastes for production of chemicals and pharmaceuticals

Received Date:13 June 2020, Accepted Date:26 July 2020, Published Date:07 August 2020

Abstract

Objectives: This study aims to isolate and identify valuable chemicals and pharmaceuticals from the waste of wood (Pinus sylvestris L.) industry and to determine their biological value. Methods: Chromatographic technique was used to isolate compounds from the waste. The chemical identity of the isolated compounds were evidenced by different spectroscopic analyses as well as comparative studies of reported data. The microbial transformed product of pinosylvin mono methyl ether was quantitatively determined using fluorimetric method. All the isolated compounds were tested for their antitoxoplasmosis activity (in vitro) against Toxoplasma gondii. Findings/ Novelty: Nine compounds were isolated and identified including three diterpenes : (1b -hydroxy dehydroabietic acid, 15-hydroxy dehydroabietic acid and Methyl-15-hydroxy dehydroabiet-18-ate) ; two aromatic aldehydes (coniferaldhyde and 3-hydroxy, 5-methoxy benzaldhyde) ; two stilbene derivatives; (Pinosylvin and Pinosylvin mono methyl ether) ; a flavan: (Pinocembrin) and a phytosterol (b -sitosterol).For the first time, the fluorimetric method was used for quantitative determination of the novel metabolite produced, E-Pinosylvin mono methyl ether 5-O-b -D-glucopyranoside, from the microbial biotransformation technique. All isolated compounds showed variable antitoxopasmosis activity, carried out for the first time, against T. gondii according to their % mortality and recorded EC50.

Keywords: Pinus sylvestris L.; saw dust; antitoxoplasmosis; fluorimetry; microbial transformation

References

  1. Sadh PK, Duhan S, Duhan JS. Agro-industrial wastes and their utilization using solid state fermentation: a review. Bioresources and Bioprocessing. 2018;5(1). Available from: https://dx.doi.org/10.1186/s40643-017-0187-z
  2. Silva D, LL. Adding Value to Agro-Industrial Wastes. Industrial Chemistry. 2016;2:103. Available from: https://doi.org/10.4172/2469-9764.1000e103
  3. Elangovan S, Afanasenko A, Haupenthal J, Sun Z, Liu Y, Hirsch AKH, et al. From Wood to Tetrahydro-2-benzazepines in Three Waste-Free Steps: Modular Synthesis of Biologically Active Lignin-Derived Scaffolds. ACS Central Science. 2019;5(10):1707–1716. Available from: https://dx.doi.org/10.1021/acscentsci.9b00781
  4. Rajinipriya M, Nagalakshmaiah M, Robert M, Elkoun S. Importance of Agricultural and Industrial Waste in the Field of Nanocellulose and Recent Industrial Developments of Wood Based Nanocellulose: A Review. ACS Sustainable Chemistry & Engineering. 2018;6:2807–2828. Available from: https://dx.doi.org/10.1021/acssuschemeng.7b03437
  5. Keeley JE. Ecology and evolution of pine life histories. Annals of Forest Science. 2012;69(4):445–453. Available from: https://dx.doi.org/10.1007/s13595-012-0201-8
  6. Rogachev AD, Salakhutdinov NF. Chemical Composition ofPinus sibirica(Pinaceae) Chemistry & Biodiversity. 2015;12:1–53. Available from: https://dx.doi.org/10.1002/cbdv.201300195
  7. Meullemiestre A, Kamal I, Maache-Rezzoug Z, Chemat F, Rezzoug SA. Antioxidant Activity and Total Phenolic Content of Oils Extracted from Pinus pinaster Sawdust Waste. Screening of Different Innovative Isolation Techniques. Waste and Biomass Valorization . 2014;5:283–292. Available from: https://doi.org/10.1007/s12649-013-9237-8
  8. Meullemiestre A, Petitcolas E, Maache-Rezzoug Z, Ginies C, Chemat F, Rezzoug SA. Isolation of volatils from maritime pine sawdust waste by different processes: Ultrasound, microwave, turbohydrodistillation, and hydrodistillation. Wood Material Science & Engineering. 2014;9(2):76–83. Available from: https://dx.doi.org/10.1080/17480272.2014.881915
  9. Sakagami H, Ikeda M, Unten S, Takeda K, Murayama J, Hamada A, et al. Antitumor activity of polysaccharide fractions from pine cone extract of Pinus parviflora Sieb. et Zucc. Anticancer research. 1987;7(6):1153–1159.
  10. Himejima M, Hobson KR, Otsuka T, Wood DL, Kubo I. Antimicrobial terpenes from oleoresin of ponderosa pine treePinus ponderosa: A defense mechanism against microbial invasion. Journal of Chemical Ecology. 1992;18(10):1809–1818. Available from: https://dx.doi.org/10.1007/bf02751105
  11. Li B, Shen YH, He YR, Zhang WD. Chemical Constituents and Biological Activities of Pinus Species. Chemistry & Biodiversity. 2013;10:2133–2160. Available from: https//doi.org/10.1002/cbdv.201100373
  12. Reinhold K, Traumann A, Tint P. Environmental and Occupational Impact on Human Health of Dust and Chemicals from Modern Technologies. Environmental Engineering and Management Journal. 2014;13(9):2233–2241. Available from: https://dx.doi.org/10.30638/eemj.2014.249
  13. Tang WL, Zhao H. Industrial biotechnology: tools and applications. Biotechnology Journal: Healthcare Nutrition Technology. 2009;4(12):1725–1739. Available from: https://doi.org/10.1002/biot.200900127
  14. Kedzierski L, Curtis JM, Kaminska M, Jodynis-Liebert J, Murias M. In vitro antileishmanial activity of resveratrol and its hydroxylated analogues against Leishmania major promastigotes and amastigotes. Parasitology Research. 2007;102(1):91–97. Available from: https://dx.doi.org/10.1007/s00436-007-0729-y
  15. Nour AMM, Khalid SA, Kaiser M, Brun R, Abdalla WE, Schmidt TJ. The antiprotozoal activity of methylated flavonoids from Ageratum conyzoides L. Journal of Ethnopharmacology. 2010;129(1):127–130. Available from: https://dx.doi.org/10.1016/j.jep.2010.02.015
  16. Montoya J, Liesenfeld O. Toxoplasmosis. The Lancet. 2004;363(9425):1965–1976. Available from: https://dx.doi.org/10.1016/s0140-6736(04)16412-x
  17. HOFFMANN S, BATZ MB, MORRIS JG. Annual Cost of Illness and Quality-Adjusted Life Year Losses in the United States Due to 14 Foodborne Pathogens†. Journal of Food Protection. 2012;75(7):1292–1302. Available from: https://dx.doi.org/10.4315/0362-028x.jfp-11-417
  18. Ahmadpour E, Ebrahimzadeh MA, Sharif M, Edalatian S, Sarvi S, Montazeri M, et al. Anti-Toxoplasma Activities of Zea Mays and Eryngium Caucasicum Extracts, In Vitro and In Vivo. Journal of Pharmacopuncture. 2019;22(3):154–159. Available from: https://doi.org/10.3831%2FKPI.2019.22.020
  19. Kavitha N, Noordin R, Chan KL, Sasidharan S. In vitro Anti-Toxoplasma gondii Activity of Root Extract/Fractions of Eurycoma longifolia Jack. BMC Complementary and Alternative Medicine. 2012;12(1):91–98. Available from: https://dx.doi.org/10.1186/1472-6882-12-91
  20. Kavitha N, Noordin R, Chan KL, Sasidharan S. Cytotoxicity activity of root extract/fractions of Eurycoma longifolia Jack root against vero and Hs27cells. Journal of Medicinal Plants Research. 2010;4:2383–2387. Available from: https://doi.org/10.5897/JMPR10.568
  21. Teimouri A, Azami SJ, Keshavarz H, Esmaeili F, Alimi R, Mavi SA, et al. Anti-<em>Toxoplasma</em> activity of various molecular weights and concentrations of chitosan nanoparticles on tachyzoites of RH strain. International Journal of Nanomedicine. 2018;Volume 13:1341–1351. Available from: https://dx.doi.org/10.2147/ijn.s158736
  22. Abugri DA, Jaynes JM, Witola WH. Anti-Toxoplasma activity of Sorghum bicolor-derived lipophilic fractions. BMC Research Notes. 2019;12(1). Available from: https://dx.doi.org/10.1186/s13104-019-4732-z
  23. El-Sharkawy S. Microbial conversion of tamoxifen. Applied Microbiology and Biotechnology. 1991;35(4):436–439. Available from: https://dx.doi.org/10.1007/bf00169745
  24. El-Tantawy NL, Soliman AF, Abdel-Magied A, Ghorab D, Khalil AT, Naeem ZM, et al. Could Araucaria heterophylla resin extract be used as a new treatment for toxoplasmosis? Experimental Parasitology. 2018;195:44–53. Available from: https://dx.doi.org/10.1016/j.exppara.2018.10.003
  25. Soliman AF, Naeem ZM, Khalil AT, Shimizu K, El-Sharkawy SH. Microbial transformation of the labdane diterpene 13-epicupressic acid. World Journal of Pharmaceutical Science. 2018;6(5):61–69. Available from: http://www.wjpsonline.org/
  26. Felscher D, Wulfmeyer M. A New Specific Method to Detect Cyanide in Body Fluids, Especially Whole Blood, by Fluorimetry. Journal of Analytical Toxicology. 1998;22(5):363–366. Available from: https://dx.doi.org/10.1093/jat/22.5.363
  27. Kamtekar S, Keer V, Patil V. Estimation of phenolic content, flavonoid content, antioxidant and alpha amylase inhibitory activity of marketed polyherbal formulation. Journal of Applied Pharmaceutical Science. 2014;4(9):61–65. Available from: 10.7324/JAPS.2014.40911
  28. Guilbault G. Practical Fluorescence, Theory Methods and Techniques. (pp. 17-159) New York. Marcel Dekker. 1973.
  29. Cover B, Gutteridge WE. A primary screen for drugs to prevent transmission of Chagas's disease during blood transfusion. Transactions of the Royal Society of Tropical Medicine and Hygiene. 1982;76(5):633–635. Available from: https://dx.doi.org/10.1016/0035-9203(82)90228-0
  30. Nyigo VA, Peter X, Mabiki F, Malebo HM, Mdegela RH, Fouche G. Isolation and identification of euphol and β-sitosterol from the dichloromethane extracts of Synadenium glaucescens. The Journal of Phytopharmacology. 2016;5(3):100–104.
  31. Schultz TP, Boldin WD, Fisher TH, Nicholas DD, Mcmurtrey KD, Pobanz K. Structure-fungicidal properties of some 3- and 4-hydroxylated stilbenes and bibenzyl analogues. Phytochemistry. 1992;31(11):3801–3806. Available from: https://dx.doi.org/10.1016/s0031-9422(00)97531-9
  32. Napal GND, Defagó MT, Valladares GR, Palacios SM. Response of Epilachna paenulata to Two Flavonoids, Pinocembrin and Quercetin, in a Comparative Study. Journal of Chemical Ecology. 2010;36(8):898–904. Available from: https://dx.doi.org/10.1007/s10886-010-9823-1
  33. Panyo J, Matsunami K, Panichayupakaranant P. Bioassay-guided isolation and evaluation of antimicrobial compounds fromIxora megalophyllaagainst some oral pathogens. Pharmaceutical Biology. 2016;54(9):1522–1527. Available from: https://dx.doi.org/10.3109/13880209.2015.1107106
  34. Cano M, Ladlow M, Balasubramanian S. Practical Synthesis of a Dithiane-Protected 3‘,5‘-Dialkoxybenzoin Photolabile Safety-Catch Linker for Solid-Phase Organic Synthesis. The Journal of Organic Chemistry. 2002;67(1):129–135. Available from: https://dx.doi.org/10.1021/jo010703e
  35. Kim HK, Choi YH, Choi JS, Choi SU, Kim YS, Lee KR, et al. A new stilbene glucoside gallate from the roots of Polygonum multiflorum. Archives of Pharmacal Research. 2008;31(10). Available from: https://doi.org/10.1007/s12272-001-2100-7
  36. Kanchanapoom T, Suga K, Kasai R, Yamasaki K, Kamel MS, Mohamed MH. Stilbene and 2-Arylbenzofuran Glucosides from the Rhizomes of Schoenocaulon officinale. CHEMICAL & PHARMACEUTICAL BULLETIN. 2002;50(6):863–865. Available from: https://dx.doi.org/10.1248/cpb.50.863
  37. Lau YL, Lee WC, Gudimella R, Zhang G, Ching XT, Razali R, et al. Deciphering the Draft Genome of Toxoplasma gondii RH Strain. PLOS ONE. 2016;11(6):e0157901. Available from: https://dx.doi.org/10.1371/journal.pone.0157901

Copyright

© 2020 shams et al..This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee).

DON'T MISS OUT!

Subscribe now for latest articles and news.