• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2020, Volume: 13, Issue: 34, Pages: 3495-3509

Original Article

Vulnerability assessment of hydrogeologic units in parts of Enugu North, Southeastern Nigeria, using integrated electrical resistivity methods

Received Date:20 August 2020, Accepted Date:05 September 2020, Published Date:15 September 2020


Aim/objectives: This research is geared towards integrating Vertical Electrical Soundings (VES) and Electrical Resistivity Tomography (ERT) profiles constrained with geoelectric sections and borehole logs to assess the vulnerability of the aquifer units employing Aquifer Vulnerability Indexing (AVI) method.Method: The dataset used in this study comprises of fifty VES, five ERT profiles surveyed in parts of Enugu north in Enugu state, two geoelectric sections and three borehole logs. The computer and manual interpretation of VES resistivity data using WinResist software gave values of resistivity, depth and thickness of each geoelectric layer using half current electrode spacing of 1.0 to 450.0m and maximum current electrode spacing of 900 m. 2D imaging data from the measured field resistance values were processed using RES2DINV32 version 3.71.115 software. The geoelectrical sections show the variation of resistivities with depth along transcent lines. The geohydraulic parameters were also estimated. Finding: Interpreted VES data revealed five to six geoelectric layers and fundamental parameters generated were used to estimate the values of hydraulic conductivity (s ) and hydraulic resistance (C) of the covering layers ranging from 0.010 to 0.769 mday􀀀1 and 40.47 to 8292.0 day􀀀1 respectively.This research revealed high hydraulic conductivity in the western part implying good groundwater potential with moderate to high protective capacity while areas with low hydraulic conductivity correspond to areas with high resistivity indicating little or no pore space and total devoid of water. The hydraulic resistance quantifies groundwater vulnerability using AVI and reveals that the area of study is characterized by low to high AVI with moderate AVI dominanting.Originality and novelty: The estimated geohydraulic properties from resistivity data and their spatial spread are promising and could increase the depth of knowledge on groundwater vulnerability within and around the study area.

Keywords: VES; ERT; AVI; hydraulic conductivity; hydraulic resistance


  1. Obiora DN, Ibuot JC, Alhassan UD, Okeke FN. Study of aquifer characteristics in northern Paiko, Niger State, Nigeria, using geoelectric resistivity method. International Journal of Environmental Science and Technology. 2018;15(11):2423–2432. Available from: https://dx.doi.org/10.1007/s13762-017-1612-8
  2. Chapman RE. Petroleum geology. Amsterdam. Elsevier. 1983.
  3. Mackay MD, Cherry AJ. Groundwater contamination: pump-and-treat remediation. Environmental Science & Technology. 1989;23(6):630–636. Available from: https://dx.doi.org/10.1021/es00064a001
  4. Haley LJ, Hanson B, Enfield C, Glass J. Evaluating the Effectiveness of Ground Water Extraction Systems. Groundwater Monitoring & Remediation. 1991;11(1):119–124. Available from: https://dx.doi.org/10.1111/j.1745-6592.1991.tb00358.x
  5. Abdalla CW. Measuring economic losses from ground water contamination: An investigation of household avoidance costs. Journal of the American Water Resources Association. 1990;26(3):451–463. Available from: https://dx.doi.org/10.1111/j.1752-1688.1990.tb01384.x
  6. Lopes DD, Silva MCPS, Fernandes F, Teixeira SR, Celligoi A, Dall'Antônia LH. Geophysical technique and groundwater monitoring to detect leachate contamination in the surrounding area of a landfill – Londrina (PR – Brazil) Journal of Environmental Management. 2012;113:481–487. Available from: https://dx.doi.org/10.1016/j.jenvman.2012.05.028
  7. Bayode S, Adeniyi KE. Integrated geophysical and hydrochemical investigation of pollution associated with the IIara Mokin dumpsite. American International Journal of Contemporary Research. 2014;4(2):150–160. Available from: www.aijcrnet.com
  8. Al-Tarazi E, Rajab JA, Al-Naqa A, El-Waheidi M. Detecting leachate plumes and groundwater pollution at Ruseifa municipal landfill utilizing VLF-EM method. Journal of Applied Geophysics. 2008;65(3-4):121–131. Available from: https://dx.doi.org/10.1016/j.jappgeo.2008.06.005
  9. Pomposiello C, Dapena C, Favetto A, Boujon P. Application of geophysical methods to waste disposal studies, municipal and industrial waste disposal. In: YY., ed. Municipal and Industrial Waste Disposal. (pp. 3-27) Rijeka, Croatia. InTech. 2012.
  10. Abbaspour KC, Rouholahnejad E, Vaghefi S, Srinivasan R, Yang H, Kløve B. A continental-scale hydrology and water quality model for Europe: Calibration and uncertainty of a high-resolution large-scale SWAT model. Journal of Hydrology. 2015;524:733–752. Available from: https://dx.doi.org/10.1016/j.jhydrol.2015.03.027
  11. Ibuot JC, George NJ, Okwesili AN, Obiora DN. Investigation of litho-textural characteristics of aquifer in Nkanu West Local Government Area of Enugu state, southeastern Nigeria. Journal of African Earth Sciences. 2019;153:197–207. Available from: https://dx.doi.org/10.1016/j.jafrearsci.2019.03.004
  12. Mor S, Ravindra K, Dahiya RP, Chandra A. Leachate Characterization and Assessment of Groundwater Pollution Near Municipal Solid Waste Landfill Site. Environmental Monitoring and Assessment. 2006;118(1-3):435–456. Available from: https://dx.doi.org/10.1007/s10661-006-1505-7
  13. Ayolabi EA, Folorunso AF, Kayode OT. Integrated Geophysical and Geochemical Methods for Environmental Assessment of Municipal Dumpsite System. International Journal of Geosciences. 2013;04(05):850–862. Available from: https://dx.doi.org/10.4236/ijg.2013.45079
  14. Iyoha A, Akhirevbulu OE, Amadasun CVO, Evboumwan IA. 2D resistivity imaging investigation of solid waste landfill sites in Ikhueniro Municipality, Ikpoba Okha Local Government Area. Journal of Resources Development and Management. 2013;1:65–69. Available from: https://scholar.google.com/scholar/138147470716505071
  15. Syukri M, Saad R, Abubakar M. Leachate migration delineation using 2-D electrical resistivity imaging (2-DERI) at Gampong Jawa. Banda Aceh. Electronic Journal of Geotechnology England. 2013;18:1505–1510. Available from: https://scholar.google.com/scholar/4411924849287169091
  16. Bayowa GO, Falebita DE, Adegboyega RO. Surface DC resistivity survey of contamination beneath Ido-Osun dumpsite. Southern Nigeria. Geofisca Internacional. 2015;54(4):343–352. Available from: https://dialnet.unirioja.es
  17. Ganiyu SA, Badmus BS, Oladunjoye MA, Aizebeokhai AP, Olurin OT. Delineation of leachate plume migration using electrical resistivity imaging on Lapite dumpsite in Ibadan. Southern Nigeria. Geosciences. 2015;5(2):70–80. Available from: https://doi.org/10.5923/j.geo.20150502.03
  18. Ugwuanyi MC, Ibuot JC, Obiora DN. Hydrogeophysical study of aquifer characteristics in some parts of Nsukka and Igbo Eze south local government areas of Enugu State. Nigeria. International Journal Physical Science. 2015;10(15):425–435. Available from: https://doi.org/10.5897/IJPS2015.4373
  19. Stempvoort DV, Ewert L, Wassenaar L. Aquifer vulnerability index: a GIS— compatible method for groundwater vulnerability mapping. Canadian Water Resources Journal. 1993;18(1):25–37. Available from: https://dx.doi.org/10.4296/cwrj1801025
  20. Ehirim CN, Ebeniro JO, Olanegan OP. A geophysical investigation of solid waste landfill using 2-D resistivity imaging and vertical electrical sounding methods in Port Harcourt municipality. The Pacific Journal of Science and Technology. 2009;10(2):604–613. Available from: https://www.akamaiuniversity.us/PJST.html
  21. Ezeh CC, Ugwu GZ. Geoelectrical sounding for estimating groundwater potential in Nsukka L.G.A. Enugu State, Nigeria. International Journal of the Physical Sciences. 2010;5(5):415–420. Available from: https://dx.doi.org/10.5897/IJPS.9000275
  22. Uma KO, Egboka BCE, Onuoha KM. New statistical grain-size method for evaluating the hydraulic conductivity of sandy aquifers. Journal of Hydrology. 1989;108(1-4):343–366. Available from: https://dx.doi.org/10.1016/0022-1694(89)90293-x
  23. Nwachukwu SO, Ofomata GEK. The Geology of Nsukka Area. The Nsukka Environment. Nigeria. 1978;p. 47–58.
  24. Agagu OK, Fayose EA, Paters SW. Stratigraphy and sedimentation in the senonian Anambra basin of Eastern Nigeria. Journal of Mining Geology. 1985;22(1):25–36. Available from: https://bigf.ac.uk/africaGroundwaterAtlas/NG1101
  25. Nwankwor GI, Egboka BC, Orajaka IP. Groundwater occurrence and flow pattern in the Enugu coal-mine area, Anambra State, Nigeria. Hydrological Sciences Journal. 1988;33(5):465–482. Available from: https://dx.doi.org/10.1080/02626668809491275
  26. Egboka BCE, Onyebueke FO. Acute hydrogeological problem Vis-a-Vis planning and management of a developing economy: A case study of Enugu area. Nigeria. Journal of water resources NAH. 1999;2(1):43–55. Available from: https://www.scrip.org
  27. BEBA, Egboka BCE. Aspects of hydrogeological studies of the escarpment regions of southeastern Nigeria. Water Resources Journal Nigeria Association of Hydrogeology. 1996;7(12):12–25. Available from: https://scholar.google.com
  28. Batayneh TA. A Hydrogeophysical Model of the Relationship between Geoelectric and Hydraulic Parameters, Central Jordan. Journal of Water Resource and Protection. 2009;01(06):400–407. Available from: https://dx.doi.org/10.4236/jwarp.2009.16048
  29. Gemail KS, El-Shishtawy AM, El-Alfy M, Ghoneim MF, El-Bary MHA. Assessment of aquifer vulnerability to industrial waste water using resistivity measurements. A case study, along El-Gharbyia main drain, Nile Delta, Egypt. Journal of Applied Geophysics. 2011;75(1):140–150. Available from: https://dx.doi.org/10.1016/j.jappgeo.2011.06.026
  30. Heigold PC, Gilkeson RH, Cartwright K, Reed PC. Aquifer Transmissivity from Surficial Electrical Methods. Ground Water. 1979;17:338–345. Available from: https://dx.doi.org/10.1111/j.1745-6584.1979.tb03326.x
  31. Stempvoort DV, Ewert L, Wassenaar L. AVI: A method for groundwater protection mapping in the prairie provinces of Canada. Prairie Provinces Water Board Report Regina, SK. 1992;114.
  32. Loke MH. Tutorial: 2-D and 3-D electrical imaging surveys (Revised Edition). 2011.
  33. Barker R, Rao TV, Thangarajan M. Delineation of contaminant zone through electrical imaging technique. Current Science. 2001;81(3):277–283. Available from: https://www.researchgate.net/2858
  34. Mogaji KA, Adiat K, Oladapo MI. Geoelectric investigation of the Dape area phase III housing estate FCT. Journal of Earth Science. 2007;1(2):76–84. Available from: https://www.researchgate.net/publication/265380681


© 2020 Ossai et al.This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee).


Subscribe now for latest articles and news.